
Workload Simulator

Creating WSim Scripts
Version 1 Release 1

SC31-8945-01

���

Workload Simulator

Creating WSim Scripts
Version 1 Release 1

SC31-8945-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
xiii.

Second Edition (October 2015)

This document applies to the Workload Simulator Version 1 Release 1 (program number 5655-I39), an IBM licensed
program, which runs under the following operating systems:

MVS/370 (MVS/SP Version 1 or later)

MVS/Extended Architecture (MVS/SP Version 2 or later)

MVS/Enterprise System Architecture (MVS/SP Version 3 or later)

OS/390

© Copyright IBM Corporation 1989, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

Notices xiii
Trademarks and service marks. xiii

About this book xv
Who should read this book xv
How to use this book xv
Where to find more information xviii

Part 1. Defining WSim networks . . . 1

Chapter 1. Introducing network
definition 3
Creating scripts for tests 3

Defining the network 3
Creating message generation decks 4
A method for creating scripts 4

Example of a script 5
Checklist for creating scripts 9

Chapter 2. Understanding the network
definition process 11
Defining a network using the test plan 11
Determining the logical and physical configuration 11

VTAM application simulation 12
TCP/IP client simulation 13

The basic network definition statements 14
NTWRK statement 15
PATH statement 15
VTAMAPPL statement. 16
LU statement 16

Hierarchy of the basic network definition statements 16
Allocating WSim data sets on MVS 16
Preprocessing your script 17

Chapter 3. Simulating logical units
using the VTAM Application Program
Interface 19
WSim support for VTAM application simulations. . 19
Defining VTAM application resources 20

Network definition statements for VTAM
resources 20
WSim VTAMAPPL coding considerations . . . 22
VTAM APPL coding considerations 22
Coordinating WSim, VTAM, and subsystem
definitions 23

VTAM application network definition example . . 24
How VTAM application sessions are initiated and
terminated. 30

Session initiation and termination by WSim . . 30

Session initiation and termination by VTAM . . 30
Additional VTAMAPPL considerations 31

Chapter 4. Simulating CPI-C
transaction programs 35
WSim support for CPI-C transaction program
simulations 35
Defining CPI-C simulation resources 36

Network definition statements for CPI-C
resources 36

Designing your CPI-C transaction program
simulations 39

Network definition considerations 39
Scripting considerations 40
CPI-C architecture considerations 41
VTAM APPL coding considerations 41
Coordinating WSim, VTAM, and subsystem
definitions 42

CPI-C transaction program network definition
example 42

Coding CPI-C network definition and STL
statements 42
Coding CPI-C message generation decks . . . 46

Chapter 5. Simulating TCP/IP devices 49
Using the TCP/IP connection protocol 49

Simulating TCP/IP clients 49
Defining TCP/IP application configurations . . 49
Using TCP/IP client simulation. 51
Coding the network definition 51

Simulating Telnet 3270 clients 53
Defining display characteristics 54
Defining 3270 characteristics 54

Simulating Telnet 5250 and NVT clients 55
Simulating FTP clients 55

Defining FILE characteristics 55
Generating FTP commands and messages . . . 56

Simulating simple TCP clients 58
Limited server 59

Simulating simple UDP clients 60

Chapter 6. Simulating SNA resources
and subareas 61
How WSim processes request/response units . . . 61

Request/response units in terminal simulations 61
Request/response units in SNA simulations . . 63

Chapter 7. Simulating specific devices 65
IBM 3270 Information Display System 65

3270 character set identification. 65
Display Monitor Facility 65
Restrictions 65

IBM 3290 Information Panel 65
Operands required for 3290 simulation 66

© Copyright IBM Corp. 1989, 2015 iii

Logical terminal screen definition 66
Simulating 3270 DBCS devices 69

IBM 5250 Display System. 70
Logic testing 70
Formatting the screen image buffer and format
table. 71

Chapter 8. Coding network options . . 73
Counters and STL integer variables 73

Sequence counters 73
Index counters 74
Allocation of counters for resources 74
Altering the values of counters and STL integer
variables 75

Future events and start time 75
Message generation delays and transmit interrupts 76

UTI statement 76
UTI adjustment 77
DELAY operand 78
RATE statement 79
THKTIME operand 79

Message logging. 79
Separate log data sets for networks 80
The DEBUG option 80
Inhibiting message logging to save space . . . 81

Network logic tests 81
What can be tested 82
When tests can be performed 83
What comparisons can be made 84
What actions can be taken 84

Online response-time statistics 84
The RSTATS operand 85

Paths for message generation decks and STL
programs 85
Random number generation 86

How WSim generates random numbers 86
Terminal scanning and automatic terminal recovery 87
Tracing messages and Structured Translator
Language (STL) programs 87

Message tracing 87
Structured Translator Language program tracing 88

User data tables 88
User exit routines 89

Chapter 9. Generating rate tables . . . 91
Creating input statements 91
Generating the rate tables 92

Part 2. Introducing message
generation decks 93

Chapter 10. Getting started with
message generation decks 95
How do message generation decks relate to network
definitions? 95
How can you create message generation decks? . . 96

Using the Structured Translator Language (STL) 96
Using message generation statements. 96
Using script generating utilities. 96

What does a message generation deck look like? . . 97

Chapter 11. Planning for message
generation 99
Planning considerations 99

Understanding what you are testing 99
Identifying special requirements 100
Designing message generation decks 100
Documenting message generation decks . . . 102
Testing scripts 102

Developing scripts. 103
Checklist for creating message generation decks 103

Part 3. Coding message
generation statements 105

Chapter 12. Basic concepts 107
Syntax conventions for message generation
statements 107

Coding the name field 108
Coding the statement field 108
Coding the operand field 108
Coding comments and the comment field . . . 110

Basic message generation statements 110
Coding the MSGTXT and ENDTXT statements 111
Coding the TEXT statement 112
Coding the WAIT statement 113
Coding the IF statement 113

Classification of message generation statements . . 115
Understanding delimiters 115
Understanding logic tests 116
Understanding control statements 116

Chapter 13. Generating messages with
the TEXT statement. 117
Generating messages manually 117

Entering data 117
Combining types of data 117

Generating messages dynamically 118
Understanding data field option syntax. . . . 118
Understanding data field option use. 119
Random numbers 119
User tables 121
Sequence and index counters 125
User and save areas 129

Summary of message generation with the TEXT
statement. 136

Chapter 14. Understanding delimiters 137
How delimiters affect the message generation
process 137
How delimiters are classified 138
Interrupting message generation with
unconditional delimiters. 139

The WAIT statement 140
The STOP statement 147
The QUIESCE statement. 147

Sending messages with conditional delimiters . . 148
Coding a script with delimiters 150

iv Creating Workload Simulator Scripts

Chapter 15. Understanding
intermessage delays 153
Specifying an intermessage delay. 153
Determining the start of an intermessage delay
with the THKTIME operand 154
Specifying multiple user time intervals 155

Coding the UTI statement 155
Referencing multiple user time intervals . . . 156

Altering user time intervals with the A (Alter)
operator command 157
Specifying delay values for individual resources 158

Coding the DELAY operand 158
Specifying intermessage delays for individual
messages 159
Coding a script with intermessage delays 161

Chapter 16. Defining logic tests . . . 165
Understanding logic tests 165

Network-level logic tests 165
Message-level logic tests. 166
Terminology used to describe message-level
logic tests 167

Coding IF statement operands. 168
Coding the WHEN operand 169
Coding the TEXT and AREA operands 170
Coding the LOC operand 171
Coding the LOCTEXT operand 172
Coding the THEN and ELSE operands 173
Coding the UTBL and UTBLCNTR operands 178
Coding the SCANCNTR operand. 179

Processing logic tests 181
Activating logic tests 181
Deactivating logic tests 181
Preventing the deactivation of logic tests . . . 183
Evaluating logic tests 183
Conditions under which a logic test is not
evaluated. 185
Logic testing DBCS data. 185

Logic test examples 186
Example illustrating logic testing 186
Example of logic testing for a display terminal
using WHEN=IMMED 188

Using logic tests to create self-checking scripts . . 190
Determining whether you need self-checking
scripts 191
Creating self-checking scripts 192
Positioning statements to check your scripts . . 194
Checking for unexpected responses 194

Chapter 17. Understanding control
statements 195
Coding control statements 195

MSGTXT 195
DATASAVE 196
CALC 196
DELAY 197
EXIT 197
CMxxxx 197

Using control statements for specific types of
devices 197

RESET. 198
ERROR 198
RESP 198
TH 198
RH 198

Monitoring and automating message generation 199
OPCMND 199
MONITOR 199
WTO and WTOABRHD 199
LOG 200

Altering sequential processing 200
BRANCH 201
CALL 201
LABEL 201
RETURN 202

Setting switches and counters 202
SETSW 202
SET. 202

Controlling events 209
EVENT 209
CANCEL 211
ON 212
DEACT 212
Coding variable event names with the
DATASAVE statement 212
Controlling communications with events . . . 214

Using events to synchronize multiple devices . . 216

Chapter 18. Generating messages for
specific types of devices 219
Generating messages for display terminals . . . 219

INPUT INHIBITED indicator 220
Simulating the enter and tab keys 220
Following message generation for a display
terminal 222

Generating messages for SNA terminals 224
Modifying SNA messages 224
Simulating errors in SNA devices. 227
Initiating sessions for SNA terminals 229

IBM 3270 Information Display System 229
Generating messages 230
Using the RESET statement. 230
Simulating the insert and delete keys 231
Simulating cursor movement 231
3270 key options 232
Simulating the 3274 local clear key 232
Logic testing 232
Simulating errors in an LU2 terminal 233
Simulating printers 233
Simulating the 3278 magnetic stripe reader . . 233
Simulating the Data Analysis/APL Character
Set 234
Simulating the APL/Text Character Set 234
Simulating 3270 extended functions 235
Testing field and character attributes 238
Logging the display image for formatting by the
Loglist Utility 241
Display Monitor Facility. 241
Simulating DBCS data entry for simulated 3270
DBCS terminals 241

IBM 5250 Display System 242

Contents v

Message generation 242
Logic testing 243
Simulating errors in a 5250 terminal 244

Part 4. Using message generation
decks 245

Chapter 19. Integrating decks with
network definitions 247
Selecting message decks in the network definition 248

Selecting decks with the PATH statement . . . 248
Assigning paths to simulated resources. . . . 248
Selecting paths in a cycle 249
Selecting paths with a probability distribution 249
Specifying the first message generation deck 250
Including decks in a script 250
Specifying decks for error recovery 251

Creating a script 252
Understanding the network definition 252
Understanding the sample message generation
decks 254
Understanding the sample script 255

Storing your scripts 257
Using the preprocessor 257
Using the ITPSYSIN utility program. 258

Chapter 20. Analyzing simulation
results 259
Running a simulation 259
Using WSim output 260

Using operator reports 260
Using the log data set 262

Using online facilities. 269
Using the Display Monitor Facility 269
Using the Response-Time Statistics Facility . . 269

Chapter 21. 3270 extended character
set 271

Part 5. Samples 277

Chapter 22. Introduction. 279
Sample installation networks 279
Message scripting examples 279
AVMON example 279

Chapter 23. Sample installation
networks 281
The ITPECHO sample VTAM application program 281
WSim as a VTAM application (INSTALL1) . . . 281

Directions for an MVS system 282

Chapter 24. Message scripting
examples 289
WSim as an application 289

Network definition 289
Message generation deck 290

STL procedure 292
TCP/IP examples 295

Telnet 3270 example 296
Sample WSim script for a Telnet 3270E
simulation 298
Sample Telnet Line Mode Network Virtual
Terminal message generation deck 301
Sample Telnet Line Mode Network Virtual
Terminal STL procedure 302
File Transfer Protocol (FTP) example 303
Simple TCP Client example. 305

CPI-C example with single-instance transaction
programs 307

Network definition statements. 308
Message generation decks 309
STL procedures 311

CPI-C example with multiple-instance transaction
programs 314

Network definition statements. 314
Message generation decks 315
STL procedures. 317

Chapter 25. AVMON example 319
Availability monitoring 319
Performance monitoring 319
Automated operations 319
AVMON processing description 319

Network controller level. 320
Subsystem controller level 320
Subsystem terminal pool level 320

Modifying AVMON for other subsystem
monitoring 321
AVMON as an automated operator 322

Automated operator requirements 322
An example of an AVMON automated operator 322

Generating a summary report with the WSim
Loglist Utility 323

Loglist Utility run parameters 324
Generating a summary report with the Response
Time Utility 325
AVMON decks 327

AVMON VTAMAPPL configuration 327
ACTRLNET message generation deck 329
AFORTIME message generation deck 331
AMONNETV message generation deck. . . . 332
ALOGNETV message generation deck 334
ACHKNETV message generation deck 335
AMONTSO message generation deck 338
ALOGTSO message generation deck 341
ACHKTSO message generation deck 342

AVMON STL procedures 344
Constant declarations. 347
Variable declarations 349
Table declarations 353
ACTLRNET procedure 354
AMONNETV procedure 356
ALOGNETV procedure 358
ACHKNETV procedure 359
AMONTSO procedure 361
ALOGTSO procedure. 364
ACHKTSO procedure 366

vi Creating Workload Simulator Scripts

AVMON utility procedures 367

Chapter 26. Loglist examples 375
INSTALL1 loglist 375
WSIM application loglist 380
CPI-C multiple-instance TP loglist 383

Chapter 27. Network models 389
VTAM application simulation 389

Network definition 389
Message generation deck 390
STL procedure 390

Telnet 3270 simulation 391
Network definition 391
Message generation deck 392
STL procedure 393

File Transfer Protocol (FTP) simulation 394
Network definition 394
Message generation deck 395
STL procedure 396

Simple TCP client simulation 396

Network definition 396
Message generation deck 397
STL procedure 398

Simple TCP sample script 399
Simple TCP Client connecting to a server using
Telnet Line Mode Network Virtual Terminal . . 399

CPI-C transaction program simulation 403
Network definition 403
Message generation decks 404
STL procedures. 407

Part 6. Appendixes 411

Glossary 413

Bibliography. 423
WSim Library 423
Related publications 423

Index 425

Contents vii

viii Creating Workload Simulator Scripts

Figures

1. Sample script in WSim scripting language 5
2. Sample script in STL 7
3. VTAM application simulation—logical

configuration 12
4. VTAM application simulation—physical

configuration (one host processor) 13
5. VTAM application simulation—physical

configuration (two host processors) 13
6. VTAM application simulation—physical

configuration (channel attached) 13
7. TCP/IP client simulation—logical

configuration 14
8. TCP/IP client simulation—physical

configuration 14
9. VTAM Network simulating a secondary

LU2—logical configuration 21
10. Coordinating CICS, VTAM, and WSim

definitions 23
11. Coordinating IMS/VS, VTAM, and WSim

definitions 24
12. CPI-C network simulating LUs and TPs 39
13. CPI-C network definition 39
14. Network and STL definition for CPI-C TP

simulation 42
15. Message deck definition for CPI-C TP

simulation 46
16. TCP/IP network—logical configuration 50
17. TCP/IP network—physical configuration 50
18. WSim rate table output 93
19. How WSim processes the sample message

generation deck 115

20. Self-checking script logic 192
21. TSO logon panel before data entry 221
22. TSO logon panel after data entry 222
23. Logical configuration for sample network

definition 254
24. WSim Interval Report 261
25. WSim End of Run Report 261
26. Beginning of WSim Loglist Utility Report 263
27. WSim Loglist Utility Report including ISPF

panel 263
28. WSim Log Compare Utility reports 265
29. WSim Response Time Utility Report 267
30. Example of RSTATS online Response-Time

Utility output 270
31. Installation test 1 system configuration 282
32. Sample TCP/IP network (logical

configuration) 295
33. Sample TCP/IP network (physical

configuration) 296
34. Sample CPI-C network with single-instance

TPs (logical configuration) 308
35. Sample CPI-C network with multiple instance

TPs (logical configuration) 314
36. How AVMON is structured 320
37. Loglist report of AVMON run 325
38. Response Time Utility report of AVMON run 326
39. INSTALL1 loglist output 375
40. WSim Application loglist output 380
41. CPI-C multiple-instance TP loglist output 383

© Copyright IBM Corp. 1989, 2015 ix

x Creating Workload Simulator Scripts

Tables

1. WSim FTP subcommand summary. 56
2. INET address format 59
3. Session control commands and responses 61
4. Data flow control commands and responses 61
5. Function management data and network

services commands and responses 62
6. Table to determine rows on screen or height of

character cell 68
7. Table to determine columns on screen or width

of character cell 68
8. How counters are allocated for resources 74

9. How user time intervals relate to
intermessage delays 154

10. How counters are allocated for resources 203
11. How EBCDIC data is assigned to a counter 208
12. Values generated by the $ATTR$ data field

option 238
13. 3270 Data Analysis/APL sequences

transmitted for WSim codes. 271
14. WSim code for received 3270 Data

analysis/APL sequences 273

© Copyright IBM Corp. 1989, 2015 xi

xii Creating Workload Simulator Scripts

Notices

References in this publication to IBM® products, programs, or services do not
imply that IBM intends to make them available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended to
state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, New York 10594
United States of America

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without
any warranty of any kind, and all warranties are hereby disclaimed including the
warranties of merchantability and fitness for a particular purpose.

Trademarks and service marks
The following terms are trademarks of IBM Corporation in the United States or
other countries or both:

ACF/VTAM CICS® IBM
IMS™ InfoWindow MVS™

MVS/ESA MVS/SP GDDM
OS/390® S/370 S/390®

SAA Series/1 SP
System/36 System/38 System/370
Systems Application Architecture® VTAM®

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1989, 2015 xiii

xiv Creating Workload Simulator Scripts

About this book

This book presents a discussion of how to define networks to be simulated by the
Workload Simulator (WSim). It discusses how to code and evaluate a simulated
network to meet the goals established by the system planner. An overview of the
network definition process is provided along with examples and guidelines for
coding the network resources that WSim can simulate. This book explains the
various options that can be coded in a network definition for controlling how and
when messages are generated for specific devices.

This book also describes how to create message generation decks for WSim
network simulations using message generation statements. It also describes how to
integrate message generation decks with a network definition to create a script. It
provides an overview of the message generation process along with examples and
guidelines for controlling message generation for the various terminal types WSim
can simulate.

The final section of this book provides users of WSim examples of the scripts that
they will be required to write. The examples not only show the user how to write
scripts, but also can serve as prototypes for the user's message generation deck.
This book also presents techniques to facilitate the creation of WSim message
generation decks.

Who should read this book
Before you read this book, you should be familiar with the information presented
in the WSim User's Guide. You will also find information related to network
definition in the WSim Script Guide and Reference and WSim Messages and Codes.

Read this book if you are responsible for coding WSim networks. This book
explains how various real network situations can be simulated by WSim, but you
should be familiar with the network concepts that are specific to the simulation
you are defining.

Read this book if you are responsible for creating message generation decks with
message generation statements. If you plan to use the Structured Translator
Language (STL) to create message generation decks, you should also see WSim
Script Guide and Reference. See Chapter 10, “Getting started with message generation
decks,” on page 95 to decide which method to use to create message generation
decks.

How to use this book
This book contains following five parts:

Part 1, “Defining WSim networks,” on page 1, starts at an introductory level and
progresses to the advanced techniques used to define different types of network
resources. While this book presents complete discussions of how to code specific
networks and resources, network definition is not always a self-contained process.
It is often helpful to create your message generation decks with your network
definition so that you can code and test them concurrently. Use this book with
WSim Script Guide and Reference as you test and refine your network definition and
message generation decks to ensure that they function as you intend.

© Copyright IBM Corp. 1989, 2015 xv

v Chapter 1, “Introducing network definition,” on page 3, provides a brief
description of WSim and an overview of the network definition process.

v Chapter 2, “Understanding the network definition process,” on page 11,
discusses how to define a simulated network based on a test plan. It discusses
the relationship between the logical configuration being simulated and the
physical configuration used to run the simulation. It also introduces the basic
network definition statements used to define a simple network.

v Chapter 3, “Simulating logical units using the VTAM Application Program
Interface,” on page 19, discusses using WSim with the VTAM Application
Program Interface to simulate LU half-sessions and provides instructions for
coding them.

v Chapter 4, “Simulating CPI-C transaction programs,” on page 35, discusses using
WSim with the Systems Application Architecture (SAA) Common Programming
Interface Communications (CPI-C) to simulate client and server transaction
programs and provides instructions for coding them.

v Chapter 5, “Simulating TCP/IP devices,” on page 49, discusses Transmission
Control Protocol/Internet Protocol (TCP/IP) resources and provides instructions
for coding them.

v Chapter 6, “Simulating SNA resources and subareas,” on page 61, discusses SNA
resources and provides instructions for coding them.

v Chapter 7, “Simulating specific devices,” on page 65, discusses the devices that
require special considerations in simulations and provides instructions for
coding them.

v Chapter 8, “Coding network options,” on page 73, discusses the various options
that can be coded in the network definition to control how the network operates
and how messages are generated.

v Chapter 9, “Generating rate tables,” on page 91, explains how to generate rate
tables to be used by WSim in calculating terminal delays.

Part 2, “Introducing message generation decks,” on page 93, introduces you to the
process of coding message generation statements to create message generation
decks for simulations.
v Chapter 10, “Getting started with message generation decks,” on page 95,

explains how WSim uses message generation decks to generate messages that
are sent by simulated terminals, how message generation decks relate to
network definitions, and how you create a message generation deck.

v Chapter 11, “Planning for message generation,” on page 99, discusses the factors
that you must consider when you plan the types of messages your simulated
resources send to the system under test.

Part 3, “Coding message generation statements,” on page 105, discusses the
different types of message generation statements you can use to create a message
generation deck and presents each statement's coding and syntax requirements.
v Chapter 12, “Basic concepts,” on page 107, explains how to read and understand

the syntax conventions and coding requirements for each type of message
generation statement. This chapter also introduces the basic message generation
statements.

v Chapter 13, “Generating messages with the TEXT statement,” on page 117,
explains how to use the TEXT statement to create messages that WSim sends to
the system under test. With the TEXT statement, you can code messages
manually or generate messages dynamically with random numbers, user table
entries, data referenced with counters, and data retrieved from save and user
areas.

xvi Creating Workload Simulator Scripts

v Chapter 14, “Understanding delimiters,” on page 137, describes delimiters,
which are message generation statements that interrupt the message generation
process. In this chapter, you learn how to code delimiters in a message
generation deck. In addition, this chapter describes coding conditional delimiters
to send messages to the system under test and interrupting message generation
with unconditional delimiters.

v Chapter 15, “Understanding intermessage delays,” on page 153, explains how to
use intermessage delays to control message traffic between WSim and the
system under test. As discussed in this chapter, you can define intermessage
delays for a network or a specific resource, and you can define multiple
intermessage delays on the network definition. This chapter also discusses
delaying the start of an intermessage delay and altering intermessage delays
with the A (Alter) operator command.

v Chapter 16, “Defining logic tests,” on page 165, explains how to code the IF
message generation statement to define message generation logic tests. With an
IF statement logic test, you can test messages that are transmitted or received by
simulated terminals and alter the message generation process based on the
results of the test.

v Chapter 17, “Understanding control statements,” on page 195, discusses the
message generation statements that control how WSim generates messages. This
chapter provides information about coding control statements for specific types
of devices, altering sequential processing, and controlling switches, counters, and
events.

v Chapter 18, “Generating messages for specific types of devices,” on page 219,
provides guidelines for generating messages for specific types of devices. This
chapter includes information about generating messages for display devices and
SNA terminals and the data field options provided for specific devices.

Part 4, “Using message generation decks,” on page 245, describes how to integrate
decks with a network definition to create a script and how to analyze and monitor
a simulation.
v Chapter 19, “Integrating decks with network definitions,” on page 247, explains

how to combine your message generation decks with a network definition to
create a script thatWSim uses to run the simulation. In this chapter, you learn
how to define the selection of message generation decks and how to store
scripts.

v Chapter 20, “Analyzing simulation results,” on page 259, explains how to use
the output that is produced by WSim to analyze simulation results. In addition,
this chapter provides information about running the test.

v Chapter 21, “3270 extended character set,” on page 271, lists the WSim
hexadecimal values used to represent the 3270 Data Analysis/APL Character Set.

Part 5, “Samples,” on page 277, provides examples of WSim scripts. It also gives an
explanation of the purpose of the script and any assumptions for the script.
v Chapter 22, “Introduction,” on page 279, gives an overview of the samples that

are provided in this book.
v Chapter 23, “Sample installation networks,” on page 281, describes a group of

sample WSim network definitions and message generation decks that are
present on the WSim install tape in the WSim sample data set.

v Chapter 24, “Message scripting examples,” on page 289, is composed of sample
scripts geared toward simulating certain applications (for example, TSO, CICS).

v Chapter 25, “AVMON example,” on page 319, provides information on the
AVMON (Availability Monitor) sample network and how you can use it.

About this book xvii

v Chapter 26, “Loglist examples,” on page 375, provides loglists for selected
samples.

v Chapter 27, “Network models,” on page 389, provides the network models that
are used by the WSim/ISPF Interface.

The Glossary lists the terms that are used in this book.

The Bibliography lists the related publications that you can use to find more
information on networks.

Where to find more information
The following list shows the books in the WSim library. For more information
about related publications, see the “Bibliography” on page 423.

Planning, Installation, and Operation
WSim User's Guide SC31-8948
WSim Messages and Codes SC31-8951
WSim Test Manager User's Guide and Reference SC31-8949

Resource and Message Traffic Definition
Creating WSim Scripts SC31-8945
WSim Script Guide and Reference SC31-8946
WSim Utilities Guide SC31-8947

Customization
WSim User Exits SC31-8950

xviii Creating Workload Simulator Scripts

Part 1. Defining WSim networks

© Copyright IBM Corp. 1989, 2015 1

2 Creating Workload Simulator Scripts

Chapter 1. Introducing network definition

This book is designed to assist both the new and the experienced Workload
Simulator (WSim) user in coding network simulations by presenting methods for
coding both basic and advanced network simulations.

Network definition is part of the process of creating scripts. A script contains the
network definition statements that describe the simulated network and the
message generation decks that specify the data sent by the various resources in the
network. This chapter and the next provide the new user with a basic
understanding of network definition. They can also be used by the experienced
user to review the basic concepts and steps involved in network definition.

In this chapter, you will find a discussion of what WSim is, where network
definition fits into the overall use of WSim, and how WSim uses the network
definition and message generation decks to simulate message traffic over a
network. At the end of the chapter is a checklist that summarizes the steps you
follow in creating scripts. After you become familiar with the process, you can use
this checklist as a quick reference when you create scripts for your own
simulations.

With WSim, you can code the following general types of network simulations:
v SNA logical units running as VTAM application programs
v CPI-C client or server transaction programs
v TCP/IP client applications, for Telnet 3270, File Transfer Protocol (FTP), Simple

TCP clients, or Simple UDP clients.
v Specific devices within single domain network configurations.

Refer to WSim User's Guide for a complete list of the network configurations,
terminals, and devices that you can simulate using WSim.

Creating scripts for tests
To perform tests, you must create the script that represents simulated network
resources and the data that is sent by these resources. You specify the resources of
your simulated network in the network definition portion of the script and the
data that is sent by the resources in the message generation decks. WSim uses
these message generation decks to send data from the simulated resources to the
system under test (the real components of your network), and to respond to data
received from the system under test as a real network would.

When you create scripts, you may be working with testing requirements that are
established in a test plan. The test plan specifies the objectives of the test, the
methods and resources to be used, and the schedule to be followed. The plan may
indicate what type of network you must define and what types of lines, terminals,
and devices the network contains. It may also indicate how many devices are
attached to the network and how these devices must interact with the system
under test. Refer to WSim User's Guide for information about test plans.

Defining the network
To define a simulated network, use network definition statements to describe the
characteristics of each of the resources you want to simulate. With network

© Copyright IBM Corp. 1989, 2015 3

definition statements, you can define devices, terminals, lines, and links and to
describe the relationships between each of these resources within the simulated
network and with the system under test.

In your network definition, you specify the sequence of message generation decks
that are used by WSim. You can also specify logic tests that compare messages that
are sent or received by WSim to expected responses. You can control the messages
that are generated by WSim based on the results of these logic tests.

Each type of network simulation has specific requirements concerning how you
simulate the resources and how you establish message generation. The type of
network you define determines the types of terminal actions and messages you
must code in your message generation decks to simulate data traffic appropriate to
that network. The requirements for describing these specific networks and
terminals in your network definition are discussed in this book. Refer to Part 2,
“Introducing message generation decks,” on page 93 for information about
message generation requirements for specific types of networks.

Creating message generation decks
To create message generation decks, use message generation statements to specify
the data that is sent by your simulated resources. Information about message
generation statements is provided in Part 2, “Introducing message generation
decks,” on page 93. WSim provides two sets of tools that can help you create
message generation decks: the Structured Translator Language (STL) and the script
generating utilities. For information about these tools, refer to WSim Script Guide
and Reference and WSim Utilities Guide.

A method for creating scripts
Creating the network definition and message generation decks that form a script
can be an interdependent process. Because the features you code in the network
definition statements directly affect how and when messages are sent, you may
want to closely coordinate the coding of these two parts of your scripts to ensure
that WSim sends messages in ways that accurately reflect the actions of specific
terminals and terminal operators.

An effective approach to creating a script is to begin with a simple network with
only one terminal and a basic message generation deck. Test this network and
message generation deck and add more message generation decks one by one. Add
network components in small groups and continue to test the script until you
complete all the coding that you need for the test.

If you create your network definition and message generation decks using this
method, you find that the process proceeds more smoothly than if you attempt to
code your entire network first and then try to test message generation decks with
this large network. By testing with a small network consisting of only a few
terminals, you can easily determine where errors occur and make corrections as
you add message generation decks.

With this approach to creating a script, you can also specify options easily in both
your network definition and your message generation decks that affect how and
when individual message generation decks are used. The definitions for some
features of network simulations, such as time delays and logic tests, can be coded
in both the network definition and the message generation decks. Moving back
and forth between your network definition and your message generation decks
enables you to effectively coordinate the coding of such features.

4 Creating Workload Simulator Scripts

The Structured Translator Language is a good tool for coding a simulation because
you can create the network definition and messages together in one input data set
with the tool. Refer to WSim Script Guide and Reference for more information.

Chapter 2, “Understanding the network definition process,” on page 11 introduces
the basic definition statements you can use to define networks and the lines,
devices, and terminals within them. Subsequent chapters provide more detailed
instruction for coding specific networks and their resources.

Example of a script
Below shows an example of a script that contains a network definition and several
message generation decks. This script defines a simple network in which WSim
simulates a single logical unit (LU) representing a VTAM application. WSim uses
basic message generation decks to log the LU onto TSO and log it off again.

Figure 1 shows how to write the script in the WSim scripting language and
Figure 2 on page 7 shows how to write the same script in STL. For more
information on coding scripts in STL, refer to WSim Script Guide and Reference.

Later chapters in this book explain the statements used to define this network.
Part 2, “Introducing message generation decks,” on page 93 explains the statements
used in the message generation decks and describes how WSim processes the
decks and how they interact with the network definition. For now, note the
relationship between the network definition, which starts with the NTWRK
statement, and the message generation decks, which start with MSGTXT
statements and end with ENDTXT statements. The network definition is always
placed at the beginning of a script. It contains statements that specify
characteristics for the entire network and definitions of individual devices within
the network. The statements immediately following the NTWRK statement specify
the characteristics for the entire network. Within the definitions for individual
devices, more characteristics can be specified to further define the devices or to
override values specified for the network. The message generation decks follow the
network definition. A script can contain any number of message generation decks.
Through network definition statements and message generation statements, you
control the sequence in which the message generation decks are used by the
simulated devices.

In this example, the order of message generation decks that WSim follows is
specified by the PATH statement. The first message generation deck, INITSESS,
logs the LU on to TSO, which is using the application ID TSO01. This message
generation deck checks to see if the LU enters ISPF after successfully logging on. If
it does, WSim proceeds to the next message generation deck, LOGOFF, specified
by the PATH statement. If the LU does not enter ISPF, WSim calls another message
generation deck, ISPFDECK, to invoke ISPF. WSim then uses the message
generation deck LOGOFF to log the LU off TSO. WSim uses the message
generation deck CLEAR to clear the screen any time the characters “X'1DC8'***”
appear in the request unit (RU+0).

SAMP1 NTWRK HEAD=’Sample Network 1’, Heading for interval reports.
UTI=100, Network user time interval.
MSGTRACE=YES, Logs MTRC records.
BUFSIZE=5000 5000-byte buffer for LU.

Figure 1. Sample script in WSim scripting language

Chapter 1. Introducing network definition 5

**
* Sample WSim Script *
* The following script defines a simple network in which WSim *
* simulates a single LU (SLU) representing a locally attached 3270 *
* terminal. WSim uses three message generation decks to log the LU onto *
* TSO and then off again. *
**
* Coding for network named SAMP1:
*
NETIF IF LOC=RU+0,

TEXT=(’1DC8’***), Defines logic test for messages
THEN=CCLEAR,WHEN=IN, received from the system under
SCAN=YES test.

*
SIMPLE PATH INITSESS,LOGOFF Specifies the sequence in which
* WSim processes message decks
* named INITSESS and LOGOFF.
*
WSIMAPPL VTAMAPPL Defines VTAM application named
* WSIMAPPL.
SLU LU MAXSESS=(0,001), Defines one secondary half

INIT=SEC, session for SLU. Specifies
LUTYPE=LU2, LU type and the name of a VTAM
DLOGMOD=D4A32782, logon mode table entry, delays
THKTIME=UNLOCK, start of intermessage delays,
LOGDSPLY=BOTH and specifies that display

* buffers are written to the
* log data set.
*

INITSESS MSGTXT
**
* INITSESS deck simulates SLU logging on to TSO. In this deck, the TSO *
* resource name is TSO01, the user ID is ID02 and the password is PW02. *
**
*
* Beginning of INITSESS.
WTO1 WTO (STARTING $MSGTXTID$) Message to operator console.
CMND1 CMND COMMAND=INIT, Initiates session.

RESOURCE=TSO01
0 IF LOC=RU+0, Tests for characters ENTER

TEXT=(ENTER USERID), USERID.
SCAN=YES,THEN=B-MSG1

WAIT1 WAIT
BRANCH LABEL=WAIT1 In case bind resets the wait.

* Interrupts message generation.
MSG1 TEXT (ID02) Enters user ID ID02.
WTO2 WTO (Logging on TSO as), Message to operator console.

(ID02)
ENTER1 ENTER Sets ENTER AID byte.
0 IF LOC=RU+0, Tests for characters ENTER

TEXT=(ENTER LOGON), LOGON.
SCAN=YES,THEN=CONT

WAIT2 WAIT
* Interrupts message generation.
MSG2 TEXT (PW02) Enters user password PW02.
ENTER2 ENTER Sets ENTER AID byte.
0 IF LOC=RU+0, Tests for characters ISPF/PDF

TEXT=(ISPF/PDF), PRIMARY.
(PRIMARY),SCAN=YES,
THEN=CONT

1 IF LOC=RU+0,TEXT=(READY), Tests for characters READY
SCAN=YES,THEN=CISPFDECK and calls ISPFDECK to invoke

* ISPF.
WAIT3 WAIT
* Interrupts message generation.
WTO3 WTO (Logged on and), Message to operator console.

(received ISPF Primary),

6 Creating Workload Simulator Scripts

(Menu)
ENDTXT End of INITSESS.

*
ISPFDECK MSGTXT
**
* ISPFDECK simulates SLU accessing ISPF and waiting for the ISPF *
* primary menu to be returned before continuing message generation. *
**
*
* Beginning of ISPFDECK.
WTO1 WTO (STARTING $MSGTXTID$) Message to operator console.
MSG1 TEXT (ISPF) Enters ISPF.
ENTER1 ENTER Sets ENTER AID byte.
0 IF LOC=RU+0, Tests for characters ISPF/PDF

TEXT=(ISPF/PDF), PRIMARY.
(PRIMARY),SCAN=YES,
THEN=CONT

WAIT1 WAIT
* Interrupts message generation.
WTO1 WTO (Logged on and), Message to operator console

(received),
(ISPF Primary Menu)

ENDTXT End of ISPFDECK.
*

LOGOFF MSGTXT
**
* The following message generation deck exits ISPF and logs the LU *
* off TSO. *
**
*
* Beginning of LOGOFF.
WTO1 WTO (Starting $MSGTXTID$) Message to operator console.
MSG1 TEXT (X) Type X to exit ISPF.
0 IF LOC=RU+0,TEXT=(READY), Tests for characters READY.

SCAN=YES,THEN=CONT
WAIT1 WAIT
* Interrupts message generation.
MSG2 TEXT (LOGOFF) Enter text LOGOFF.
WTO2 WTO (Logged off TSO) Message to operator console.
ENTER1 ENTER
* Interrupts message generation.
OPCMND1 OPCMND (ZEND) Specifies the operator
WAIT2 WAIT command ZEND to end WSim execution.

ENDTXT End of LOGOFF.
*
CLEAR MSGTXT
**
* WSim calls the following message generation deck to clear the screen *
* when *** appears in the request unit (RU+0). *
**
*
* Beginning of CLEAR.
CLEAR1 CLEAR Clears the screen.

ENDTXT End of CLEAR.

@network
**
* Sample WSim Script *
* The following script defines a simple network in which WSim *
* simulates a single LU (SLU) representing a locally attached 3270 *
* terminal. The three procedures are used by WSim to log the LU *
* onto TSO and then off again. *

Figure 2. Sample script in STL

Chapter 1. Introducing network definition 7

**
* Coding for network named SAMP1:
samp1 ntwrk head=’Sample Network 1’, Heading for interval reports

uti=100, Network user time interval.
msgtrace=yes, Logs MTRC records.
bufsize=5000 5000-byte buffer for LU.

netif if loc=ru+0,
text=(’1dc8’***), Defines logic test for
then=cclearkey,when=in, messages received from the
scan=yes system under test.

*
simple path initsess,logoff Specifies the sequence in
* which WSim processes message
* decks named INITSESS and
* LOGOFF.
*
cmm1 vtamappl
* Defines VTAM application
* named WSIMAPPL.
*
slu lu maxsess=(0,001), Defines one secondary half

init=sec, session for SLU. Specifies
lutype=lu2, LU type and the name of a
dlogmod=d4a32782, VTAM logon mode table
thktime=unlock, entry, delays start of
logdsply=both intermessage delays, and

* specifies that display
* buffers are written to the
* log data set.
@endnetwork

/***/
/* INITSESS simulates SLU logging on to TSO. In this procedure, */
/* the TSO resource name is TSO01, the user ID is ID02 and */
/* the password is PW02. */
/***/
initsess: msgtxt

say ’STARTING’ msgtxtid()
onin1: onin index(RU,’ENTER USERID’) > 0 then found = on

found = off
initself(’TSO01’)
do while found = off
wait until onin
end
deact onin1
type ’ID02’
say ’Logging on TSO as ID02’
transmit using enter,
and wait until onin index(RU,’ENTER LOGON’) > 0
type ’PW02’

onin2: onin index(RU,’READY’) > 0 then call ispfdeck
transmit using enter,
and wait until onin index(RU,’ISPF/PDF PRIMARY’) > 0
deact onin2
say ’Logged on and received ISPF Primary Menu’
endtxt

/***/
/* ISPFDECK simulates SLU accessing ISPF and waiting for the ISPF */
/* primary menu to be returned before continuing message */
/* generation. */
/***/
ispfdeck: msgtxt

say ’STARTING ’msgtxtid()
type ’ISPF’

8 Creating Workload Simulator Scripts

transmit using enter,
and wait until onin index(RU,’ISPF/PDF PRIMARY’) > 0
say ’Logged on and received ISPF Primary Menu’
endtxt

/***/
/* LOGOFF exits ISPF and logs the LU off TSO. */
/***/
logoff: msgtxt

say ’Starting ’msgtxtid()
type ’X’
transmit using enter,
and wait until onin index(RU,’READY’) > 0
type ’LOGOFF’
transmit using enter
say ’Logged off TSO’
opcmnd ’zend’
wait
endtxt

/***/
/* CLEARKEY simulates a user hitting the clear key. */
/***/
clearkey: msgtxt

transmit using clear
endtxt

Checklist for creating scripts
The following checklist summarizes the steps that you follow to create a script and
indicates where you can find instructions for performing each step. The first step is
preparation that you should make before coding your scripts. The remaining steps
provide a method that can help you code and test your scripts efficiently. After
you gain a basic understanding of network definition and message generation, you
can refer to this checklist each time you create scripts for your simulations.

Preparation:
1. Determine the resources you need to simulate and the configuration of real

components you need to perform the simulation, based on the test plan. See
Chapter 2, “Understanding the network definition process,” on page 11.
Coding and Testing:

2. Code a small test network based on the test plan. This network must consist of
only one terminal. See Chapter 3, “Simulating logical units using the VTAM
Application Program Interface,” on page 19 through Chapter 5, “Simulating
TCP/IP devices,” on page 49 for coding instructions for specific networks and
Chapter 7, “Simulating specific devices,” on page 65 for coding instructions for
specific devices. Also, refer to WSim Script Guide and Reference for information
on how to code the network definition as part of an STL input data set.

3. Code a basic message generation deck based on the test plan. See WSim Script
Guide and Reference, WSim Utilities Guide, and Part 2, “Introducing message
generation decks,” on page 93 for information about coding message generation
decks.

4. Run the network definition and message generation deck through the
Preprocessor to determine if the syntax is correct and to store the network
definition and message generation deck statements for later use. If you are
using the Structured Translator Language, you can run the STL Translator to
check the syntax of your message generation decks and store them. The STL
Translator also invokes the Preprocessor for you if you include the network
definition in your STL input.

Chapter 1. Introducing network definition 9

If the Preprocessor or STL Translator detects any errors, fix them and run the
utility again until there are no errors. See WSim Utilities Guide for information
about the Preprocessor and WSim Script Guide and Reference for information
about the STL Translator.

5. Perform a test run to make sure the simulation works as you intended.
6. Use the Loglist Utility to process the results, if wanted. See WSim Utilities Guide

for information about the Loglist Utility.
7. Continue coding message generation decks one by one and adding network

components in small groups. Translate or preprocess your script, whichever is
appropriate, and perform test runs until you have all the message generation
decks and network components you need for your simulation. Include all the
network options you need for your tests. See Chapter 8, “Coding network
options,” on page 73 and the WSim Script Guide and Reference for information
about the various options you can code in your network definition.

10 Creating Workload Simulator Scripts

Chapter 2. Understanding the network definition process

This chapter discusses how to define a simulated network based on the
information in the test plan. It explains how to determine the configuration of
network resources that WSim simulates and the configuration of real components
that WSim requires to run the simulation. Illustrations show the general
configuration types that you can simulate and the configurations of components
that you use to perform these simulations.

After you identify the network resources that you want to simulate, you can code
your simulated network using network definition statements. You must use
specific combinations of network definition statements and code certain operands
on these statements to describe the devices and lines that correspond to the type of
configuration you are simulating. This chapter introduces the basic network
definition statements that are used to define a simple Systems Network
Architecture (SNA) network. By understanding how the basic statements are used
in this simple network, you will be prepared to code the more complex networks
discussed later in this book. Finally, this chapter discusses the Preprocessor, which
you can use to check the syntax of your coded statements.

Defining a network using the test plan
The requirements for a simulation are established in a test plan. Depending on the
procedures followed by your organization, you might be responsible for writing
the test plan or you might be provided with a completed test plan. If you are
responsible for writing the test plan, refer to WSim User's Guide for details about
the type of information to include in the test plan.

A test plan generally contains the following information:
v Objectives for the simulation
v Methods for performing the simulation
v Existing resources to be incorporated into the simulation
v Resources to be simulated by WSim
v Reporting requirements
v Schedule for setting up and running the simulation.

Before defining your network, you can determine from the test plan what types of
devices and terminals you need to simulate and how they interact with the system
under test.

Determining the logical and physical configuration
The test plan indicates the number and types of resources you must simulate with
WSim. When these simulated resources interact with the real components of the
system under test, a logical configuration representing a real network is created.
The real components can include anything that you want to test with WSim, such
as host processors, communication controllers, cluster controllers, terminals, and
application programs.

From the logical configuration, you can determine the physical configuration of
hardware and software that WSim requires to run the simulation. The physical
configuration also represents how WSim is connected to the system under test.

© Copyright IBM Corp. 1989, 2015 11

You can perform the following general types of simulations with WSim:

VTAM application simulation
VTAM applications, logical units, or CPI-C transaction programs that
access real applications in the system under test

TCP/IP client simulation
Telnet 3270, 3270E, 5250, NVT, FTP, or Simple TCP or UDP clients that
access real applications in the system under test

To perform these simulations, you must run WSim in one of the following physical
configurations:
v VTAMAPPL for VTAM application or CPI-C transaction program simulations
v TCP/IP for TCP/IP client simulations

The following figures show the relationship between the logical configurations that
include these simulated resources and the physical configurations that are used to
perform the simulations. In the illustrations of the logical configurations, the
components that WSim simulates are shown within a dotted box.

VTAM application simulation
Figure 3 illustrates the logical configuration of a system in which WSim simulates
SNA logical units (LUs) accessing VTAM applications. To VTAM, these LUs appear
as other application programs, while to the system under test, they appear as
applications or terminals. Although WSim does not simulate lines, links, or other
hardware in this configuration, it does simulate the activities of the LUs and can be
used to test applications or subsystems through the VTAM Application Program
Interface (VTAM API).

Note: WSim also uses the VTAM application simulation type to simulate CPI-C
transaction programs. The logical configuration for a CPI-C transaction program
simulation is the same as that depicted in Figure 3 except that LUs in that figure
become TPs.

Figure 4 on page 13, Figure 5 on page 13, and Figure 6 on page 13 illustrate the
physical configurations you can use to run a VTAM application simulation. In
these physical configurations, WSim runs as a VTAM application and uses the
VTAM Application Program Interface (VTAM API).

Simulated by WSim

Figure 3. VTAM application simulation—logical configuration

12 Creating Workload Simulator Scripts

WSim can run in the same host processor as VTAM, as shown in Figure 4, or in a
separate host processor, as shown in Figure 5 and Figure 6. If you are conducting
tests in which it is important that WSim execution does not affect the system under
test, you might want to run WSim in a separate host processor. Refer to WSim
User's Guide for more information about the types of tests that require running
WSim in a host processor separate from the system under test.

The VTAM subarea can be part of a large network with many other nodes. The
real applications with which the simulated applications communicate might be in
some other node in the network. WSim and VTAM can be in one host processor
and test applications in a different host processor that is attached through an NCP
or a channel-to-channel adapter.

TCP/IP client simulation

Figure 7 on page 14 illustrates the logical configuration of a system in which WSim
simulates the TCP/IP client applications of the system under test. The clients
simulated by WSim can be Telnet 3270, 3270E, 5250, NVT,File Transfer Protocol
(FTP), or Simple TCP or UDP.

WSim

Figure 4. VTAM application simulation—physical configuration (one host processor)

WSim

Figure 5. VTAM application simulation—physical configuration (two host processors)

WSim

Figure 6. VTAM application simulation—physical configuration (channel attached)

Chapter 2. Understanding the network definition process 13

Figure 7 illustrates the physical configuration of TCP/IP client network in which
WSim simulates TCP/IP client applications within the system under test.

Figure 8 illustrates the physical configuration you can use to run the simulations
shown in Figure 7.

The basic network definition statements
After you determine the configuration of network resources that you want to
simulate, you can define your simulated resources. Use network definition
statements to specify the characteristics of all the resources in your network. Enter
these network definition statements in MVS data sets (see “Allocating WSim data
sets on MVS” on page 16).

Specific network definition statements apply to the different resources found in
each type of network that is discussed in this book. Refer to WSim Script Guide and
Reference for full descriptions and coding requirements for all of the statements
used in a network definition.

Each network definition statement consists of the following three parts:

Name This is the first part of each statement and provides a label for the statement.
The name begins in column 1 and can be up to 8 alphanumeric characters.

Simulated by WSim

TN3270E
Client

TN3270
Client

TN5250
Client

TNNVT
Client

Simple
UDP

Client

Figure 7. TCP/IP client simulation—logical configuration

WSim

Figure 8. TCP/IP client simulation—physical configuration

14 Creating Workload Simulator Scripts

Statement This is the actual language statement. It is the term used to refer to the
statement in text discussions and WSim Script Guide and Reference. The
statement must be separated from the name by at least one blank and cannot
begin in column 1.

Operand This represents any number of optional operands that are available for the
statement. The operands must be separated from the statement by at least 1
blank. The last column available for defining operands is column 71.

Note: All of the examples in this book show network definition statements in
uppercase. You can code network definition statement in mixed case.

To understand the process of coding network definition statements, it is helpful to
start with the statements used for a basic VTAMAPPL network in which WSim
simulates SNA logical units (LUs) accessing VTAM applications. For this basic
simulation, you use the following 4 statements to define the resources WSim
simulates:
v NTWRK
v PATH
v VTAMAPPL
v LU

The 4 basic network definition statements are explained in the following sections.

NTWRK statement
The NTWRK statement is the first statement in all network definitions. It provides
a name for the network and specifies characteristics that apply to the network as a
whole. You can code operands on the NTWRK statement to establish default
values for the VTAMAPPL and LU statements that are coded after the NTWRK
statement. The operands for the NTWRK statement that apply to specific networks
are discussed in the chapters concerning those networks. Chapter 8, “Coding
network options,” on page 73 discusses operands that specify options you can use
for all network simulations.

The following example shows the beginning of a network definition for a network
named TESTNET. This NTWRK statement specifies message tracing for all LUs
defined in the network.
TESTNET NTWRK MSGTRACE=YES

Note: If you are using STL, you would code STLTRACE=YES in place of
MSGTRACE=YES to specify message tracing of the STL program.

PATH statement
The PATH statement identifies the sequences of message generation decks. WSim
uses these sequences to generate messages for terminals.

In the following example, if you specify PATH1 for a terminal, that terminal runs
DECK1. When the terminal finishes running DECK1, it then runs DECK2. After it
finishes running DECK2, it starts over with DECK1. The terminal repeats the
execution of the message generation decks on the paths indefinitely until the
operator stops the terminal.
PATH1 PATH DECK1,DECK2

Chapter 2. Understanding the network definition process 15

VTAMAPPL statement
The VTAMAPPL statement defines the VTAM application program symbolic name
and the password associated with the VTAM application symbolic name.

LU statement
The LU statement defines one or more logical unit half-sessions to be simulated
using the WSim/VTAM application program interface, and it defines the type of
logical unit simulation to be performed for the SNA half-sessions.

Hierarchy of the basic network definition statements
You must code the NTWRK, PATH, VTAMAPPL, and LU statements that define
the simulated resources in a specific order. The PATH statement must precede all
VTAMAPPL or LU statements. The NTWRK statement must be the first statement
in the network definition. The LU statements must follow the VTAMAPPL
statements with which they are associated. If you define multiple VTAMAPPLs
and LUs, the statements must be ordered in a hierarchical fashion as shown in the
following example.
NTWRK
PATH

VTAMAPPL
LU

VTAMAPPL
LU
LU

For other types of network simulations, such as CPI-C and TCP/IP, refer to WSim
Script Guide and Reference for information about the required hierarchy of
statements used to define the resources.

Allocating WSim data sets on MVS
If you are running your simulations on MVS, you must allocate data sets to
contain your network definition statements and message generation decks. The
following example shows an example of a data set allocation job.
//ALLOCATE JOB
//STEP1 EXEC PGM=IEFBR14
//INITDD DD DSN=WSIM.TESTFILE,UNIT=3380,VOL=SER=WSIMPK,
// SPACE=(CYL,(10,,10)),DISP=(NEW,CATLG),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//MSGDD DD DSN=WSIM.MSGFILE,UNIT=3380,VOL=SER=WSIMPK,
// SPACE=(CYL,(10,,10)),DISP=(NEW,CATLG),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

INITDD is the data set that contains your network definition statements. MSGDD
is the data set that contains your message generation statements. As described in
“Preprocessing your script” on page 17, you might need to increase the block size
of these data sets as you preprocess your script.

Note: The BLKSIZE for these data sets must be a multiple of 80 and the LRECL
must be 80. Data sets can also be allocated from ISPF under TSO.

16 Creating Workload Simulator Scripts

Preprocessing your script
WSim provides a Preprocessor you can use to check the syntax of the network
definition and message generation statements you code. The Preprocessor places
the statements into data sets that you use when running tests. If you use the
Preprocessor to check your statements, you can ensure that your network can
initialize without syntax errors. However, the Preprocessor only checks the
correctness of the coding. Once the coding is correct, you should determine
whether the statements produce the expected outcome by running tests.

If you are using the Structured Translator Language to create your message
generation decks, you can use the STL Translator to store your statements and
check their syntax, like the Preprocessor. See WSim Script Guide and Reference for
information about using the STL Translator. You can also include your network
definition in the STL input data set. The STL Translator invokes the Preprocessor
for you to check the syntax of your network definition and store it.

The input for the Preprocessor consists of the data sets that contain your network
definition statements and message generation decks. The output consists of a
listing of the statements you coded and error message for lines that contain errors.
It also stores your network definition and message generation decks in the INITDD
and MSGDD data sets, if they are syntactically correct.

When you use the Preprocessor, it builds most of the control blocks necessary to
run the network. Therefore, when you preprocess a large network, you must have
a region size large enough for the network control blocks. Statements at the end of
the Preprocessor output indicate the number of bytes required to store the network
control blocks and message generation decks. Check these values each time you
obtain Preprocessor output to determine when you might need to increase your
region size to continue preprocessing your network definition and message
generation decks. Refer to WSim Utilities Guide for specific instructions for using
the Preprocessor and analyzing the results.

Note: The Preprocessor indicates only the amount of storage needed to store the
network definition and message generation decks. It does not indicate the amount
of storage needed to run the network simulation. Refer to WSim User's Guide for a
description of the various methods you can use to calculate storage requirements.

If you want to store your network definition and message generation decks
without preprocessing them, you can use the utility program ITPSYSIN. ITPSYSIN
stores your statements without checking the syntax. If you want to store previously
processed scripts, scripts with minor changes, or automatically generated scripts,
you can store them quickly using ITPSYSIN. For more information about
ITPSYSIN, see WSim Utilities Guide.

Chapter 2. Understanding the network definition process 17

18 Creating Workload Simulator Scripts

Chapter 3. Simulating logical units using the VTAM
Application Program Interface

This chapter discusses how to use WSim to simulate logical units (LUs) using the
VTAM Application Program Interface (VTAM API). You can use WSim as a VTAM
application program to test existing VTAM applications or applications that you
are developing. You can test application programs with WSim in the following
ways:
v Simulate secondary LU terminals that log on to and test VTAM applications.
v Simulate primary LU application prototypes that can be logged on to and tested

by real terminals or simulated terminals.

The first part of this chapter briefly explains how WSim supports VTAM
application simulations. It then explains how to define VTAM application
resources. An illustration and complete network definition provide an example of a
simulated VTAM application configuration. Finally, this chapter discusses how
VTAM application sessions are initiated and terminated by both WSim and VTAM.

WSim support for VTAM application simulations
WSim uses the VTAM API to simulate single, multiple, and parallel logical unit
half-sessions that can be primary or secondary. Through the API, WSim appears to
VTAM as one or more VTAM application programs. Because VTAM treats an
application program as a logical unit, WSim can simulate logical unit half-sessions
that look like SNA terminals to other VTAM application programs in the system
under test.

You can simulate secondary LUs to test application programs and network
resources—for example, simulated 3270 LU2s exercising real TSO, IMS/VS, CICS,
or CMS applications. Or, you can simulate primary LUs to test application
prototypes—for example, simulated application programs that real terminals can
log on to. By using WSim to simulate application prototypes, you can create
simulated panels, logic, and error messages, and scripts that can be used later to
test the real program code.

WSim uses the authorized path facility in VTAM when it is APF-authorized, thus
improving performance. Also, WSim does not drive any hardware directly when
running exclusively as a VTAM application. No communication controller or
attached NCP is required to simulate logical units. WSim uses the VTAM API to
send and receive messages, eliminating the need for any extra hardware resources.
To run as a VTAM application program without a communication controller, WSim
requires only a currently supported release of VTAM and the appropriate
VTAMLST APPL definitions that enable WSim to communicate with VTAM.

WSim only simulates local SNA logical units within a VTAM subarea. However,
this does not limit a simulated VTAMAPPL LU to same-domain sessions because
VTAM might be able to route data to and from partner LUs in other domains.

Note that a VTAM application simulation does not represent an entirely realistic
terminal emulation because WSim performs the simulation entirely within its own
software, without a communication controller. Various system components, such as
the host processor, operating system, and even VTAM, will “know” that the

© Copyright IBM Corp. 1989, 2015 19

simulated LUs are not real terminals. However, WSim does present a logically
realistic simulation of local SNA primary or secondary LUs, and therefore, can
effectively represent the actions of these LUs accessing application programs.

You can use the full capabilities of message generation statements, as they apply to
SNA logical units, to simulate local terminals or applications. See WSim Script
Guide and Reference or Part 2, “Introducing message generation decks,” on page 93
for information about the message generation statements used to simulate SNA
resources.

Notes:

v A secondary logical unit in a WSim VTAM application simulation cannot
communicate with a Network Routing Facility (NRF) primary logical unit that
runs within an NCP because of NRF restrictions.

v When WSim simulates a VTAMAPPL LU and the application program that it
communicates with issues a VTAM SIMLOGON OPTCD=Q command, the
VTAMAPPL simulated LU behaves differently than a real terminal.
With a real terminal, VTAM waits until the session with the SLU terminal ends
and then schedules the logon exit associated with the SIMLOGON OPTCD=Q
command. This is because the real terminal has a static session limit of one.
With the WSim VTAMAPPL LU, VTAM schedules the logon exit associated with
the SIMLOGON OPTCD=Q command immediately. This is because there is no
session limit for a VTAM application program. When this occurs, the application
program usually sends the BIND for the next session to the WSim VTAMAPPL
LU before the first session ends. WSim queues the BIND until a secondary LU
under the VTAMAPPL can accept the BIND.

Defining VTAM application resources
This section describes the network definition statements you can use to define
VTAM application resources. It also discusses coding considerations you must be
aware of when defining these resources.

Network definition statements for VTAM resources
Use the VTAMAPPL and LU network definition statements to define a VTAM
application program and each logical unit half-session that WSim simulates. In
VTAM, the application program defined by these network definition statements is
a logical unit capable of supporting multiple and parallel sessions. A network
definition can define any number of VTAM application programs.

Note: “VTAMAPPL” is the network definition statement that defines simulated
VTAM applications. “VTAM APPL” refers to the APPL statement in a VTAMLST
that defines a single VTAM application in a VTAM domain.

The network definition statements used to simulate VTAM applications are
described as follows.

VTAMAPPL statement
Use the WSim VTAMAPPL statement to define a VTAM application
program. You can use VTAM-unique operands on the VTAMAPPL
statement to build a VTAM access method control block (ACB). The name
of the VTAMAPPL statement identifies it to VTAM. The following
operands on the VTAMAPPL statement specify various characteristics of
the simulated VTAM application program:

20 Creating Workload Simulator Scripts

v APPLID defines the symbolic name of the application program. This
symbolic name is either the name of an active VTAM APPL resource or
the ACBNAME operand value coded on a VTAM APPL statement.

v PASSWD specifies the password associated with the application
program. This password must be the same as the PRTCT operand value
coded on the VTAM APPL statement.

LU statement
Use the LU statement to define one or more logical unit half-sessions and
the type of half-session (logical unit type, whether the LU is primary or
secondary) to be simulated. Any number of LU statements can follow a
VTAMAPPL statement. WSim simulates each logical unit half-session as a
separate entity (such as a single display, device, or terminal) for message
generation and message logging. The name of the LU statement identifies
it to WSim. The following operands on the LU statement specify various
characteristics of the simulated logical unit half-session:
v MAXSESS defines the number of primary and secondary half-sessions to

be simulated.
v LUTYPE defines the type of logical unit half-session to be simulated.

The type of logical unit half-session has meaning only for secondary
half-sessions.

v DLOGMOD specifies the name of a logon mode table entry for the LU.
v RESOURCE identifies the name of a VTAM LU with which the WSim

LU can initiate a session. When running with VTAM Version 3, the
RESOURCE operand must specify the name appearing on the VTAMLST
APPL statement that is used to define the LU to VTAM. Do not use the
ACBNAME coded on the VTAMLST APPL statement as the RESOURCE
operand value. See Figure 10 on page 23 and Figure 11 on page 24 for
examples of how to code the RESOURCE operand.

Other operands on the LU statement define logical unit half-session
characteristics that WSim uses to interpret and generate unique data
streams associated with products such as 3270 and 5250 devices.

Figure 9 shows the logical configuration of a VTAM network in which WSim
simulates one secondary LU2.

WSim

Figure 9. VTAM Network simulating a secondary LU2—logical configuration

Chapter 3. Simulating logical units using the VTAM Application Program Interface 21

The following example shows the network definition for this VTAM network. In
this example, the WSim LU2 is known to VTAM as WSIMLU. It is known to WSim
as USER1.
VTAMNET NTWRK BUFSIZE=2048,THKTIME=UNLOCK,INIT=SEC
0 PATH LOGON
WSIMLU VTAMAPPL
USER1 LU LUTYPE=LU2,

RESOURCE=TSO

WSim VTAMAPPL coding considerations
If the application that WSim is communicating with requires a unique resource
name for each logical unit half-session, you must code multiple VTAMAPPL
statements, each with a single LU statement, to simulate a single logical unit
half-session. If the application that WSim is communicating with does not require a
unique resource name for each logical unit half-session and also supports parallel
sessions, you can code a single VTAMAPPL statement, followed by one or more
LU statements, to simulate multiple logical unit half-sessions.

VTAM APPL coding considerations
Each simulated VTAM application defined in a network requires an active VTAM
APPL when the ACB associated with the simulated VTAM application is opened.
Use operands on the VTAM APPL definition statement to specify the name of the
APPL, the authority of the APPL to use certain VTAM functions, and whether the
simulated VTAM application using the APPL supports parallel sessions.

The VTAM APPL can have any valid name. If the VTAM application program that
WSim communicates with requires a unique resource name for each SNA session
that it supports, the name of the APPL must be one of the valid resource names.
For example, when communicating with a CICS application, the APPL name must
be defined in the CICS Terminal Control Table (TCT) as the name of a VTAM
logical unit, such as an LU2 for a 3270 terminal.

You must specify AUTH=(ACQ) on the VTAM APPL definition when WSim is
simulating primary LU half-sessions that initiate the session, rather than letting the
secondary LU initiate the session.

You must specify PARSESS=YES on the VTAM APPL definition when the WSim
VTAM application has more than one active session, such as parallel sessions, with
another VTAM application or logical unit.

You must not code SRBEXIT=YES, APPC=YES, or AUTH=TSO on the VTAM APPL
definition.

If you are going to use a VTAM APPL for a single session, EAS=1 and
SESSLIM=YES must be specified. Specifying EAS=1 holds down the amount of
CSA storage VTAM allocates for the APPL. Specifying SESSLIM=YES forces a
session limit of one to the application program, which is consistent with a real
terminal such as a 3270 LU type 2. SESSLIM=YES is supported by VTAM starting
with VTAM V3R4.

For VTAM application simulation, VTAM manages the encryption and decryption
of messages. Refer to the cryptographic keys section in VTAM Network
Implementation Guide, for information on defining SLU cryptographic keys.

22 Creating Workload Simulator Scripts

Coordinating WSim, VTAM, and subsystem definitions
Before a session can be established between your simulated VTAMAPPL LU and a
subsystem within the system under test, you must make sure that your resource
definitions are consistent with your VTAM and subsystem definitions. Figure 10
and Figure 11 on page 24 show how you must coordinate resource definitions for
two common subsystems, CICS and IMS/VS.

Note: If you use the CICS autoinstall feature, a problem can occur caused by the
APPL statement in the VTAMLIST not specifying the MODETAB that CICS
expects. To remedy the situation, specify the LU2 MODETAB that CICS expects on
the APPL statement in the VTAMLIST for the APPL statement.

For example, in the VTAMLIST for WSim, specify the following codes:
xxxxyyyy APPL DLOGMOD=D4A32782,MODETAB=...

In the VTAMAPPL statement, specify the following codes:
VTAMAPPL APPLID=xxxxyyyy

xxxxyyyy must conform to the naming conventions defined in the CICS autoinstall
module. If you use your own autoinstall program, xxxxyyyy must conform to the
naming conventions your autoinstall program expects.

Also, if you are using the CICS autoinstall feature, see the appropriate CICS
resource definition book for your system for information on standard autoinstall

WSim

WSIM

WSIM

WSIM

WSIM

WSIM

WSIM

Figure 10. Coordinating CICS, VTAM, and WSim definitions

Chapter 3. Simulating logical units using the VTAM Application Program Interface 23

models.

VTAM application network definition example
The following example shows a complete network definition for four VTAM
applications that use all of the session setups and session types available to
communicate with each other. This network demonstrates the ability of VTAM
applications to communicate with each other as if they were communicating with a
logical unit associated with an SNA terminal.

The four VTAM applications in this example are known to VTAM by the resource
names APPL1, APPL2, APPL3, and APPL4. These resource names must be used for
session initiation. The four VTAM applications are known to WSim as BIG_APPL,
VA_APPL2, VA_APPL3, and VA_APPL4. You do not have to use WSim names that
are different from those that VTAM knows; you can name the applications APPL1,
APPL2, APPL3, and APPL4 for WSim VTAMAPPL definitions as well.

VTAM application BIG_APPL assumes the role of a simple 3270 application
program that can communicate with real 3270 LU Type 2 terminals. BIG_APPL also
has one secondary LU half-session that simulates a 3270 LU Type 2 to another
VTAM application (VA_APPL4).

VTAM applications VA_APPL2 and VA_APPL3 communicate with BIG_APPL and
simulate a single 3270 secondary LU Type 2 half-session. This type of VTAM
application definition is required to communicate with most VTAM application

WSIM

WSIM

WSIM

WSIM

WSIM

WSIM

WSIM

WSIM

WSIM

Figure 11. Coordinating IMS/VS, VTAM, and WSim definitions

24 Creating Workload Simulator Scripts

programs. Like most SNA terminals, these VTAM applications support only one
session. Normally, you need to define single-session VTAM applications to
communicate with CICS/VS or IMS/VS applications.

VTAM application VA_APPL4 is somewhat like BIG_APPL in reverse. VA_APPL4
simulates two 3270 secondary LU Type 2 half-sessions and communicates with
BIG_APPL. VA_APPL4 also looks like a simple 3270 application program to the
secondary half-session simulated by BIG_APPL.

Message generation deck SLU_DECK generates standard 3270 LU Type 2 data
streams. Message generation deck PLU_DECK processes the 3270 data streams
received and generates a response message with the appropriate 3270 command
and write control character (WCC) bytes based on the AID received. Refer to
Part 2, “Introducing message generation decks,” on page 93 for information about
the message generation statements included in these message generation decks.
VTAM_EX1 NTWRK MSGTRACE=YES,UTI=100,STLTRACE=YES

PLU_PATH PATH PLU_DECK primary message deck
SLU_PATH PATH SLU_DECK secondary message deck

* VTAM Application VTAM Application
* and LU Half-sessions and LU Half-sessions
* -------------------------- --------------------------
* BIG_APPL PLUHS_AB_1 LU (pri) <-session-> VA_APPL2 SLU_HS_A_1 LU (sec)
* BIG_APPL PLUHS_AB_2 LU (pri) <-session-> VA_APPL3 SLU_HS_B_1 LU (sec)
* BIG_APPL PHUHS_CD_1 LU (pri) <-session-> VA_APPL4 SLU_HS_C_1 LU (sec)
* BIG_APPL PLUHS_CD_2 LU (pri) <-session-> VA_APPL4 SLU_HS_D_1 LU (sec)
* BIG_APPL SLUHS_E_1 LU (sec) <-session-> VA_APPL4 PLUHS_E_1 LU (pri)
*
* primary sends BIND, secondary receives BIND
* Parallel sessions exist between BIG_APPL and VA_APPL4.

*---
* Define a VTAM application with four primary and one secondary
* LU half-sessions.
*
* APPL1 APPL AUTH=(ACQ), minimum VTAM "APPL" required
* PARSESS=YES
*

BIG_APPL VTAMAPPL APPLID=APPL1 VTAM APPL = ’APPL1’

PLUHS_AB LU MAXSESS=(2,0), two primary half-sessions
INIT=SEC, secondary will initiate session
PATH=(PLU_PATH), primary path
DELAY=F0 no delays for primary

PLUHS_CD LU MAXSESS=(2,0), two primary half-sessions
INIT=PRI, primary will initiate session
PATH=(PLU_PATH), primary path
RESOURCE=APPL4, generate INIT-SELF to ’APPL4’
DLOGMOD=D4A32782, VTAM logon mode table entry
DELAY=F0, no delays for primary
FRSTTXT=HOLDUP delay before sending INIT-SELF

SLUHS_E LU MAXSESS=(0,1), one secondary half-session
LUTYPE=LU2, LU Type 2 secondary half-session
INIT=PRI, primary will initiate session
PATH=(SLU_PATH), secondary path
LOGDSPLY=BOTH, log display images
THKTIME=UNLOCK start delay after keyboard unlock

*
* Define a VTAM application with one secondary LU half-session.
*
* APPL2 APPL minimum VTAM "APPL" required
*

Chapter 3. Simulating logical units using the VTAM Application Program Interface 25

VA_APPL2 VTAMAPPL APPLID=APPL2 VTAM APPL = ’APPL2’

SLU_HS_A LU MAXSESS=(0,1), one secondary half-session
LUTYPE=LU2, LU Type 2 secondary half-session
INIT=SEC, secondary will initiate session
PATH=(SLU_PATH), secondary path
RESOURCE=APPL1, generate INIT-SELF to ’APPL1’
DLOGMOD=D4A32782, VTAM logon mode table entry
LOGDSPLY=BOTH, log display images
THKTIME=UNLOCK start delay after keyboard unlock

*---
* Define a VTAM application with one secondary LU half-session.
*
* APPL3 APPL minimum VTAM "APPL" required
*
VA_APPL3 VTAMAPPL APPLID=APPL3 VTAM APPL = ’APPL3’

SLU_HS_B LU MAXSESS=(0,1), one secondary half-session
LUTYPE=LU2, LU Type 2 secondary half-session
INIT=SEC, secondary will initiate session
PATH=(SLU_PATH), secondary path
DLOGMOD=D4A32782, VTAM logon mode table entry
LOGDSPLY=BOTH, log display images
THKTIME=UNLOCK, start delay after keyboard unlock
FRSTTXT=LOGAPPL1 generate INIT-SELF to ’APPL1’

*---
* Define a VTAM application with two secondary and one primary LU
* half-sessions.
*
* APPL4 APPL AUTH=(ACQ), minimum VTAM "APPL" required
* PARSESS=YES
*

VA_APPL4 VTAMAPPL APPLID=APPL4, VTAM APPL = ’APPL4’
LUTYPE=LU2, LU Type 2 secondary half-session
INIT=PRI, primary will initiate session
PATH=(SLU_PATH), secondary path
LOGDSPLY=BOTH, log display images
THKTIME=UNLOCK start delay after keyboard unlock

SLU_HS_C LU MAXSESS=(0,1) one secondary half-session
SLU_HS_D LU MAXSESS=(0,1) one secondary half-session
PLUHS_E LU MAXSESS=(1,0), one primary half-session

PATH=(PLU_PATH), primary path
RESOURCE=APPL1, generate INIT-SELF to ’APPL1’
DLOGMOD=D4A32782, VTAM logon mode table entry
DELAY=F0 no delays for primary

PLU_DECK MSGTXT
WTO (Starting $MSGTXTID$)
TEXT (’F5C3’), Erase/Write, Unlock Keyboard

($LUID$$SESSNO$ is Active) startup message

* The following IFs are used by the primary LU half-session to
* 1) ignore SNA responses,
* 2) ignore Data Flow Control (DFC) and Session Control (SC) requests,
* 3) ignore Network Control (NC) requests,
* 4) ignore middle-in-chain and last-in-chain chain elements,
* 5) echo data received when an Enter AID is received,
* 6) generate a time-of-day response message when a PF1 AID is received,
* 7) unlock the keyboard when a Clear AID is received, and
* 8) echo data received when any other AID is received.

1 IF LOC=RH+0,TEXT=’80’,THEN=IGNORE,STATUS=HOLD
2 IF LOC=RH+0,TEXT=’40’,THEN=IGNORE,STATUS=HOLD
3 IF LOC=RH+0,TEXT=’20’,THEN=IGNORE,STATUS=HOLD

26 Creating Workload Simulator Scripts

4 IF LOC=RH+0,TEXT=’02’,ELSE=IGNORE,STATUS=HOLD
5 IF LOC=RU+0,TEXT=(’7D’),THEN=C-ECHO,STATUS=HOLD, Enter

DATASAVE=(1,B+1,500) Save data
6 IF LOC=RU+0,TEXT=(’F1’),THEN=C-TIME,STATUS=HOLD PF1
7 IF LOC=RU+0,TEXT=(’6D’),THEN=C-UNLOCK,STATUS=HOLD Clear
8 IF LOC=RU+0,TEXT=(’FF’),THEN=C-ECHO,STATUS=HOLD, Others

COND=NE,DATASAVE=(1,B+1,500) Save data
TOPLOOP WAIT

BRANCH LABEL=TOPLOOP

UNLOCK TEXT (’F1C3’) Write, Unlock Keyboard
RETURN return to caller

TIME DATASAVE AREA=1,
TEXT=($TOD,8$) save time-of-day

TEXT (’F5C3’), Erase/Write, Unlock Keyboard
(The current time-of-day is),
($RECALL,1+0,2$:$RECALL,1+2,2$:), hh:mm:ss.hh
($RECALL,1+4,2$.$RECALL,1+6,2$)

RETURN return to caller
ECHO TEXT (’F1C3’), Write, Unlock Keyboard

(’11’), Set Buffer Address (SBA) order
($RECALL,1$), recall cursor address and data
(’13’) Insert Cursor (IC) order

RETURN return to caller
ENDTXT

HOLDUP MSGTXT
WTO (Starting $MSGTXTID$)
DELAY TIME=F5 allow VTAMAPPL VA_APPL4 to start
ENDTXT

LOGAPPL1 MSGTXT
WTO (Starting $MSGTXTID$)
CMND COMMAND=INIT, generate INIT-SELF

RESOURCE=APPL1, to ’APPL1’
MODE=D4A32782 VTAM logon mode table entry

DELAY TIME=F0 start SLU_DECK quickly
ENDTXT

SLU_DECK MSGTXT
WTO (Starting $MSGTXTID$)

* Wait for the primary side of the session to send the first message.

0 IF LOC=RU+0,TEXT=(PLU_HS),SCAN=YES,
THEN=B-STARTNOW

WAITING WAIT
BRANCH LABEL=WAITING let PLU_HS send first message

STARTNOW DEACT IFS=(0)

* Loop until WSim is stopped.

TOPLOOP CLEAR
TEXT (Hello There PLU_HS! This is $LUID$$SESSNO$.)
ENTER
PF1
ERIN
TEXT (I feel like I am talking to myself.)
ENTER
PF24
WTO (Loop Completed for $LUID$$SESSNO$ $SEQ,5$)
BRANCH LABEL=TOPLOOP
ENDTXT

The following example shows how to code functionally comparable message
generation decks that are shown previously using the Structured Translator

Chapter 3. Simulating logical units using the VTAM Application Program Interface 27

Language (STL). This example represents the two separate STL programs that are
translated by the STL Translator into the message generation decks. Note that
program 1 contains PLU_DECK as well as UNLOCK, TIME, ECHO, and HOLDUP,
which are STL procedures that are called by PLU_DECK. For information about
STL, see WSim Script Guide and Reference.

Program 1
@program=trace1x
plu_deck: msgtxt
/**/
/* PLU_DECK is used by the primary LUs to check messages received */
/* from the secondary LUs. The primary LUs take action based on the */
/* attention identifier (AID) byte in the received RUs. */
/* */
/* The device buffer is saved for later use when a message is */
/* received by the primary LU. */
/* */
/* Each time a message is received by the primary LU, WSim checks */
/* to see if the message is to be ignored. If it is not to be */
/* ignored, WSim uses the SELECT group to determine what action */
/* should be taken based on the first byte in the buffer (the AID */
/* byte). */
/* */
/* The following messages will be ignored: */
/* First byte of RH=’80’x - SNA response */
/* First byte of RH=’40’x - Data Flow Control */
/* First byte of RH=’20’x - Network Control */
/* First byte of RH=’02’x - Chaining indicator */
/**/

say ’Starting’ MSGTXTID()
type ’F5C3’x||LUID()||SESSNO()||’ is active’
onin substr(rh,1,1)=’80’x then rsp=on
onin substr(rh,1,1)=’40’x then dfc=on
onin substr(rh,1,1)=’20’x then nc=on
onin substr(rh,1,1)=’02’x then chain=on
onin then received=on
onin received=on then data_received=buffer
do forever
transmit using enter and wait until onin received=on
if rsp=off & dfc=off & nc=off & chain=off then
select
when substr(data_received,1,1)=’F1’X then call time
when substr(data_received,1,1)=’6D’X then call unlock
otherwise call echo
end
rsp=off; dfc=off; nc=off; chain=off; received=off

end
endtxt

unlock: msgtxt
/**/
/* UNLOCK is called by PLU_DECK whenever a ’6D’x byte is detected in */
/* the first byte of the RU received from the secondary LU. A ’6D’x */
/* byte means that the ’CLEAR’ key of the secondary has been pressed */
/* to clear the screen. The primary LU sends back a ’F1C3’x, which */
/* clears the screen and unlocks the keyboard. */
/**/

type ’F1C3’x
return
endtxt

time: msgtxt
/**/
/* TIME is called by PLU_DECK whenever a ’F1’x byte is detected in the*/
/* first byte of the RU returned from the secondary LU. A ’F1’x byte */
/* means that the PF01 key of the secondary LU has been pressed to */
/* request the time of day. The TOD(6) function returns the time */

28 Creating Workload Simulator Scripts

/* of day in the format HHMMSS. TIME puts the time of day into the */
/* format HH:MM:SS. The time is inserted in a time */
/* message and sent back to the secondary LU. */
/**/

time_of_day=substr(tod(6),1,2)||’:’||,
substr(tod(6),3,2)||’:’||,
substr(tod(6),5,2)

type ’F1C3’x||’The current time-of-day is ’||time_of_day
return
endtxt

echo: msgtxt
/**/
/* ECHO is called by PLU_DECK each time the primary LU receives a */
/* message it is not to ignore (no "ignore" switch is set) */
/* and the AID byte associated with the message is something other */
/* than ’6d’x (CLEAR) or ’F1’x (PF01). This procedure extracts */
/* everything in the device buffer from the second byte on and */
/* sends it back to the secondary LU. */
/**/

type ’F1C311’x||substr(data_received,2)||’13’x
return
endtxt

holdup: msgtxt
/**/
/* HOLDUP is used by the primary LUs to ensure that the secondary */
/* LUs have a chance to get started before WSim begins sending */
/* messages. It is a simple 5-second delay. */
/**/

say ’Starting’ MSGTXTID()
suspend(5)
endtxt

Program 2
@program=trace2x
logappl1: msgtxt
/**/
/* LOGAPPL1 is used as a FRSTTXT deck by some of the secondary LUs. */
/* It sends an initiate-self RU to the primary LU to establish a */
/* session. */
/**/

say ’Starting’ MSGTXTID()
initself(’APPL1’,’D4A32782’)
endtxt

slu_deck: msgtxt
/**/
/* SLU_DECK is used by the secondary LUs. It waits in a DO WHILE */
/* loop until ’PLUHS’ appears in the buffer, indicating the primary */
/* LU has contacted the secondary LU. */
/* */
/* The DO FOREVER loop that follows sends a CLEAR, types and enters */
/* a message, sends a PF1, erases to end-of-input, and types and */
/* sends another message with a PF24. Since THKTIME=UNLOCK is */
/* specified in the network definitions, the next message in this */
/* series is not sent until the primary LU returns a keyboard unlock. */
/* */
/* A counter is incremented by one and a message is written to the */
/* operator console indicating that the loop has been successfully */
/* completed the number of times indicated by the counter. */
/**/

count=0
say ’Starting’ MSGTXTID()
do while index(buffer,’PLUHS’)=0
suspend(2)
end
do forever

Chapter 3. Simulating logical units using the VTAM Application Program Interface 29

transmit using clear
type ’Hello There PLUHS! This is ’||LUID()||SESSNO()||’.’
transmit using enter
transmit using pf1
erin
type ’I feel as if I am talking to myself.’
transmit using pf24
count=count+1
say ’Loop completed for ’||LUID()||SESSNO()||’-’||char(count)
end
endtxt

How VTAM application sessions are initiated and terminated
This section discusses how sessions are initiated and terminated by the simulated
logical unit and by the VTAM logical unit.

Session initiation and termination by WSim
WSim performs session initiation and termination by generating the Formatted
System Services (FSS) NS RUs, INIT-SELF, and TERM-SELF.

WSim converts the INIT-SELF RU into a VTAM REQSESS or SIMLOGON request
to issue to VTAM. If VTAM can initiate the session, it passes a BIND or CINIT RU
to the WSim VTAM application and the SNA session is initiated. If VTAM cannot
initiate the session, the REQSESS or SIMLOGON request completes unsuccessfully
and VTAM rejects the INIT-SELF RU with an appropriate SNA sense code. If the
rejected INIT-SELF RU was generated automatically by WSim, it is generated again
after a 30-second delay.

For a primary logical unit half-session, WSim converts the outgoing TERM-SELF
RU into a CTERM RU. This CTERM RU causes WSim to generate an UNBIND that
terminates the session with the secondary logical unit.

For a secondary logical unit half-session, WSim converts the outgoing TERM-SELF
RU into a VTAM TERMSESS request to issue to VTAM. The VTAM TERMSESS
requests VTAM to unconditionally UNBIND the session. The WSim VTAM
application receives the UNBIND request to terminate the session.

The WSim/VTAM subtask interface layer rejects FSS RUs other than INIT-SELF
and TERM-SELF and all unformatted system services (USS) RUs.

Session initiation and termination by VTAM
When a simulated VTAM application receives an unsolicited BIND request from
VTAM, the BIND is passed to the first available secondary LU half-session (LU
statement) to initiate a session. If no secondary LU half-sessions are available, the
BIND is queued for later use. A secondary LU half-session is available under the
following conditions:
1. An automatic INIT-SELF is not generated.
2. The RESOURCE operand value, if coded, matches the name of the VTAM

resource sending the BIND.
3. A session is not already active.

If a secondary LU half-session receives an UNBIND, the LU is assigned a queued
BIND without going through this availability test.

30 Creating Workload Simulator Scripts

When a simulated VTAM application receives an unsolicited CINIT (logon request)
from VTAM, the CINIT is passed to the first available primary LU half-session that
sends a BIND to initiate the session. The primary LU half-session is available
under the same conditions that are previously described for a secondary LU
half-session. If no primary LU half-sessions are available, the CINIT is rejected.

Additional VTAMAPPL considerations
When doing a VTAMAPPL LU 6.2 simulation, you need to take into account a few
more considerations. The considerations are listed here in the order that you need
to do them.

As for how to tie everything together for VTAMAPPL type of networks, see the
rest of this chapter.
1. Get a trace of a real device that you want to simulate. Use this later to help set

up your VTAM MODEENT and understand what to expect from the
simulation. You also need to know how many parallel session you will be
using. Make sure to include the BIND in this trace.

2. Set up a network by using as an example either the network that is shown
below or the one in Part 5, “Samples,” on page 277.

3. Generate a script using ITPVTBRF and ITPSGEN from a GTF or NPM trace of
the actual device going to the application you want to drive. ITPVTBRF needs
the BIND to be included in the trace.

4. Ensure that the BIND image bytes 23 and 24 for the simulated device's sessions
have the same settings as the management session's (that is, the CNOS
session's) using SNASVCMG.

5. If WSim is simulating the primary LU, then the BIND is controlled with the
MODEENT in the mode table associated with the secondary LU (usually the
application program or subsystem). Ensure that this MODEENT has all the
values specified that you want WSim to send in the BIND. The BIND image
bytes 23 and 24 are controlled with the PSERVIC operand in the MODEENT.

6. If you use CICS, make sure that WSim's APPLIDs are defined under CICS's
TCT or Auto-install Exit as a valid workstation.

7. You can only do an INIT with VTAMAPPL simulations.
8. To set the BIND USER DATA structured subfields, code them on the DATA=(...)

operand on the CMND COMMAND=INIT line. The network name and LU
name that you are simulating (which is not necessarily the same one that you
captured) need to be in the BIND USER DATA (this network name and LU
name is the Network ID of the real network that you are executing in and the
APPLID from the VTAMAPPL statement in your network). This is commonly
called the LU name in a real network. To avoid confusion, code the LU name in
the network with the same value as the APPLID on the VTAMAPPL above it.
The names are in USER DATA subfield X'04'.

9. In your generated scripts, make sure to hold off your real application sessions
until after your CNOS session is resolved.

Here is a sample VTAMLST definition for the Application Program Minor Node:
GM3Z1001 APPL AUTH=(ACQ),PARSESS=YES

Here is a sample “model” network. Use this with script generation. Make sure to
specify the NETWORK control command in the SYSIN for ITPSGEN. This creates
an updated model network to run with the generated scripts.

Chapter 3. Simulating logical units using the VTAM Application Program Interface 31

Your APPLID and LU name do not have to be the same, but it should be. Also, LU
name is used by the script generator to identify the sessions for which you are
interested in generating a script. Later, when you run your script with this
network, it uses the APPLID.
YOURNET NTWRK INIT=PRI
0 PATH WAITDECK
VTAMA VTAMAPPL APPLID=YOURLU
YOURLU LU LUTYPE=LU6

This is what an updated model network looks like (from ITPSGEN):
YOURNET NTWRK INIT=PRI
YOURLU PATH YOURLU
@DK00000 PATH @DK00000
@DK00001 PATH @DK00001
0 PATH WAITDECK
VTAMA VTAMAPPL APPLID=YOURLU
YOURLU LU PATH=(YOURLU),MAXSESS=(1,0),

LUTYPE=LU6
YOURLU LU PATH=(@DK00000),MAXSESS=(1,0),

LUTYPE=LU6
YOURLU LU PATH=(@DK00001),MAXSESS=(0,1),

LUTYPE=LU6

Here is a sample VTAMAPPL LU6.2 network and generated decks:
YOURNET NTWRK INIT=PRI
YOURLU PATH YOURLU
@DK00000 PATH @DK00000
@DK00001 PATH @DK00001
0 PATH WAITDECK
VTAMA VTAMAPPL APPLID=GM3Z1001
YOURLU LU PATH=(YOURLU),LUTYPE=LU6,MAXSESS=(1,0) primary CNOS
YOURLU LU PATH=(@DK00000),LUTYPE=LU6,MAXSESS=(1,0) primary
YOURLU LU PATH=(@DK00001),LUTYPE=LU6,MAXSESS=(0,1) secondary

* This deck is for the CNOS - PLU session.
YOURLU MSGTXT
* The following INIT is generated with the USER DATA all in hex.
* I translated some of it so that those part would be easy to find.

CMND COMMAND=INIT,MODE=SNASVCMG,RESOURCE=EBAACIDC,
* DATA=(’000902E2D5C1E2E5C3D4C7090301595B8D60595B8D12’),

DATA=(’000902’SNASVCMG’090301595B8D60595B8D12’),
(’04’EB0ZNET0.GM3Z1001)

RH DR1=ON,DR2=OFF,EXC=OFF,CDI=OFF
DELAY TIME=F0000008

* This is the CNOS flow.
TEXT (’310502FF0003D000000206’1’001A11’EB0ZNET0.GM3Z1001x),

(’FE102B593D00010842EE3F’r))’59’$$’8D00191210020000’),
(’00000004000400000008’WSIMLU62)

RH FMI=ON,CDI=ON
* Do not proceed until the CNOS flow has been resolved:
5 IF LOC=RU+2,TEXT=(’1210’),THEN=CONT

WAIT
* After the CNOS flow add the following lines:

DATASAVE AREA=1,TEXT=($LUID$)
EVENT POST=1+0

* The above two lines tells the other sessions for this VTAMAPPL
* that the CNOS is resolved and that they may continue.
WAIT WAIT

BRANCH LABEL=WAIT
ENDTXT

* This deck is for the application-data PLU session.
@DK00000 MSGTXT
* This waits for the CNOS session to be resolved.

32 Creating Workload Simulator Scripts

DATASAVE AREA=1,TEXT=($LUID$)
WAIT EVENT=1+0

* This INIT is similar to the CNOS’s but it can use a
* different MODEENT, as long as the BIND image of this session
* has the same values in bytes 23-24 as the CNOS’s BIND image.

CMND COMMAND=INIT,MODE=WSIMLU62,RESOURCE=EBAACIDC,
DATA=(’000902’WSIMLU62’090301595B8D75595B8D12’),
(’04’EB0ZNET0.GM3Z1001)
.
.
.
the rest of the generated script
.
.
.

ENDTXT

* This deck is for the application-data SLU session.
@DK00001 MSGTXT
* This waits for the CNOS session to be resolved.

DATASAVE AREA=1,TEXT=($LUID$)
WAIT EVENT=1+0

.

.

.
the rest of the generated script
.
.
.

ENDTXT

Chapter 3. Simulating logical units using the VTAM Application Program Interface 33

34 Creating Workload Simulator Scripts

Chapter 4. Simulating CPI-C transaction programs

This chapter discusses how to use WSim to simulate Common Programming
Interface Communications (CPI-C) transaction programs. You can use CPI-C
transaction program simulations to test applications, or to do stress or performance
testing. You can test existing applications or applications that you are currently
developing. Any real applications that are part of a CPI-C transaction program
simulation must be APPC applications (that is, they must use LU 6.2
communication protocols), but they need not use the CPI-C application program
interface (API).

WSim provides support for CPI-C Version 1 Release 1. This level of CPI-C
architecture is described in SAA Common Programming Interface Communications
Reference (SC26-4399-06). Your WSim scripts that define CPI-C transaction programs
must conform to this level of architecture.

WSim support for CPI-C transaction program simulations
WSim can simulate transaction programs that are clients, servers, or both. WSim
determines if a transaction program is a client or server based on the program's
role in a given conversation. A client transaction program is a program that
allocates an outbound conversation, and a server transaction program is a program
that accepts an inbound conversation. A transaction program may have both
inbound and outbound conversations active at the same time, and act as a client
for some conversations and a server for others. You can use CPI-C transaction
program simulations in the following ways:
v to simulate a client communicating with a real server
v to simulate a server communicating with a real client
v to simulate a client communicating with a simulated server

WSim can simulate multiple clients and servers in a network, and each transaction
program can have multiple conversations active at any given time. However, a
server transaction program can only accept one inbound conversation.

WSim can simulate multiple instances of a given transaction program. A
transaction program instance is a copy of the transaction program running on a
given LU. You can simulate up to 32,767 concurrently active instances of a
transaction program. The instances are identified by an instance number from 1 to
99,999. The instance number rolls over at 99,999.

One or more message deck paths define the transaction program to WSim. The
message deck specified as FRSTTXT, or the first deck in the first path defining the
transaction program, receives control when a new transaction program instance is
activated. WSim activates transaction program instances in these ways:
v Initial instances are activated when the network is started. If the specified

maximum concurrent instances is achieved before all initial instances are started,
start-up for the remaining initial instances is delayed.

v When an instance completes, if all initial instances have not been activated,
another instance is activated.

v When an attach request is received for a transaction program, WSim activates a
new instance under the following conditions:

© Copyright IBM Corp. 1989, 2015 35

– No instance of the transaction program is active.
– Instances of the transaction program are active, and the following conditions

are met:
- All of the active instances have already accepted an inbound conversation.
- The number of active instances is less than the maximum concurrent

instances specified for the transaction program.

Normally the transaction program terminates when WSim reaches the end of the
message deck path defining the transaction program. However, if the transaction
program is defined as repeating, WSim repeats the message deck path. WSim
continuously repeats the message deck path of a repeating transaction program
until a message deck construct or operator command stops execution, or the
simulation ends.

The CPITRACE operand of the TP network definition controls the logging of CPI-C
transaction program trace information. WSim provides the following options:
v WSim logs each CPI-C verb and its parameters when it is issued and when it

completes.
v WSim logs each CPI-C verb only when it completes.
v WSim logs messages that trace the issuance and completion of CPI-C verbs.
v WSim does not log any CPI-C trace information.

Specify the CTRC control command to request that CPI-C trace information be
printed when running the Loglist Utility. WSim logs CPI-C attach requests and
send and receive data as XMIT and RECV records. The MLOG network definition
operand controls the logging of these records. Refer to Chapter 26, “Loglist
examples,” on page 375 for sample loglist output of a CPI-C transaction program
simulation.

Defining CPI-C simulation resources
This section describes the network definition statements you can use to define
CPI-C simulation resources. It also discusses coding considerations you must be
aware of when defining these resources.

Network definition statements for CPI-C resources
To simulate CPI-C transaction programs, make the following additions to your
network definition:
v Specify one or more message deck paths to represent the transaction program.
v Use one or more APPCLU statements to specify a logical unit type 6.2 through

which the transaction program accesses the network.
v Use one or more TP statements to specify each transaction program that resides

on a given logical unit. Include in these statement parameters to specify the
number of transaction program instances to beactivated initially by WSim, and
the maximum number of instances that can be active concurrently.

v Optionally, use one of the following methods to specify CPI-C side information.
This information associates a symbolic destination name with the partner logical
unit, the name of the partner transaction program, and the mode to be used for
conversations with that logical unit and transaction program combination:
– Include a SIDEINFO operand on the APPCLU statement. The definitions

supplied by this operand can be used by all transaction programs residing on
this logical unit.

36 Creating Workload Simulator Scripts

– Specify a SIDEINFO network definition table by using the SIDEINFO,
SIDEENT, and SIDEEND statements. This table defines network-wide side
information available for use by all transaction programs in the network.

Note: If symbolic destination names are not defined in a side information table,
the destination information must be specified in the script using CPI-C
statements.

The network definition statements used to simulate CPI-C transaction programs
are described as follows. Refer to WSim Script Guide and Reference for complete
statement definitions.

SIDEINFO Statement Group
Use the SIDEINFO statement group to define a network-wide CPI-C side
information table. The side information table defines symbolic destination
namesused to refer to an LU name, mode name, and TP name triplet. The
SIDEINFO group is defined as follows:
SIDEINFO
SIDEENT DESTNAME=...

.

.
SIDEENT
SIDEEND

Specify one SIDEENT statement for each symbolic destination name to be
defined. A network can contain only one SIDEINFO statement group.

APPCLU Statement
Use the APPCLU statement to define a CPI-C APPC logical unit. The
CPI-C APPC logical unit is implemented as a VTAM application program
using APPC (LU 6.2) communication protocols. You can use VTAM-unique
operands on the APPCLU statement to build a VTAM access method
control block (ACB). You can define any number of APPCLUs in a network
definition. The following operands on the APPCLU statement specify
characteristics of the simulated VTAM application program:
v APPLID defines the symbolic name of the VTAM application program.

This name must match an entry in VTAM's configuration tables
(VTAMLST) created using a VTAM APPL definition statement. The name
specified is the name of the APPL statement or ACBNAME operand
value coded on an APPL statement. The corresponding VTAM APPL
definition statement must specify APPC=YES. The APPLID name must
be unique within all APPC logical units defined by the simulation. If the
APPLID operand is not specified, it defaults to the name of the APPCLU
statement.

v PASSWD specifies the password associated with the application
program. This password must be the same as the PRTCT operand value
coded on VTAM's APPL definition statement.

In addition, you can specify the following optional operands on the
APPCLU statement to supply information used when establishing LU 6.2
sessions and CPI-C conversations:
v CNOS specifies session limits for the LU 6.2 sessions established

between this logical unit and other logical units defined in your
network.

Chapter 4. Simulating CPI-C transaction programs 37

v SIDEINFO defines symbolic destination names available for use by
transaction programs on this logical unit when initializing conversations.
These definitions are global to all transaction programs residing on this
logical unit.

TP Statement
Use the TP statement to define CPI-C transaction programs to WSim. For
each transaction program residing on a given logical unit, you must
provide a TP statement following the APPCLU statement that defines the
CPI-C logical unit. You must provide at least one TP statement after each
APPCLU statement. You can specify any number of TP statements
following an APPCLU statement. You can specify the same TP name after
multiple APPCLU statements (the associated path list need not be the
same). The name of the TP statement identifies the resource to WSim. The
following operands on the TP statement specify various characteristics of
the simulated transaction program:
v CPITRACE specifies the level of CPI-C tracing to be performed.
v FRSTTXT specifies the first message generation deck to be used when

the transaction program is started.
v INSTANCE specifies the number of instances of the transaction program

to be activated by WSim when the network is started, and the maximum
number of concurrent instances that are supported.

v PATH specifies the PATH statements for message generation deck
selection this transaction program references in controlling message
generation.

v TPNAME specifies the name of the transaction program to be simulated
on this logical unit.

v TPREPEAT specifies whether message generation should repeat the
paths defined for the transaction program, or whether message
generation should end for the transaction program when the end of the
path sequence is reached.

v TPSTATS specifies whether WSim should keep message sent and
received statistics for each individual transaction program instance.

v TPSTIME specifies the stagger time to be used by WSim in initiating
multiple transaction program instances at network start-up.

v TPTYPE specifies whether the transaction program is a clientor a server.
v UCD specifies whether the transaction program is to recognize user

control data and treat it as if it were application data.

Figure 12 on page 39 shows the logical configuration of a CPI-C network in
which WSim simulates two APPC logical units, each with two CPI-C
transaction programs.

38 Creating Workload Simulator Scripts

Figure 13 shows the network definition for this CPI-C network. In this
example, VTAM knows the APPC logical units as APPCLU1 and
APPCLU2. WSim knows the transaction programs for APPCLU1 as
LU1TP1 and LU1TP2, and the transaction programs for APPCLU2 as
LU2TP1 and LU2TP2.

Designing your CPI-C transaction program simulations
When you design your CPI-C transaction program simulation, you must consider
each of the following areas:
v Network definition
v Scripting
v CPI-C architecture
v VTAM definitions.

Here are some considerations you should be aware of when coding CPI-C
simulations.

Network definition considerations
v Each APPCLU statement in a simulation must have a unique APPLID name

(either coded of defaulted). This name must match an entry in VTAM's
configuration tables (VTAMLST) you created by using a VTAM APPL definition
statement. The name must match the name of the APPL statement or the
ACBNAME operand value coded on the APPL statement. If multiple simulations
are running on the same VTAM, the APPLID names must be unique across all

Simulated by WSim

Figure 12. CPI-C network simulating LUs and TPs

CPIC NTWRK

CLIENT1 PATH CLIENT1
SERVER1 PATH SERVER1
CLIENT2 PATH CLIENT2
SERVER2 PATH SERVER2

APPCLU1 APPCLU
LU1TP1 TP TPTYPE=CLIENT,PATH=(CLIENT1),INSTANCE=(1,1)
LU1TP2 TP TPTYPE=SERVER,PATH=(SERVER1),INSTANCE=(0,1)

APPCLU2 APPCLU
LU2TP1 TP TPTYPE=CLIENT,PATH=(CLIENT2),INSTANCE=(1,1)
LU2TP2 TP TPTYPE=SERVER,PATH=(SERVER2),INSTANCE=(0,1)

Figure 13. CPI-C network definition

Chapter 4. Simulating CPI-C transaction programs 39

simulations. This is necessary because VTAM associates a conversation to an
APPLID name and receives requests by this name, rather than by the LU or TP
name. In addition, for each APPC logical unit referenced by a CPI-C network,
you must specify APPC=YES on the APPL statement in the VTAMLST dataset.

v There is no concept of CNOS at the user interface level of CPI-C. However,
WSim provides a CNOS interface to allow the user to have control over the
number of sessions established between pairs of logical units.

v When you are simulating both the client and server logical units, client logical
units may come active before server logical units. This may cause CNOS failures
or allocate failures or both. To prevent this, your simulation must allow server
logical units to complete startup before CNOS processing or conversation
allocation takes place. Do one of the following actions to make this happens:
– Specify a nonzero user time interval (UTI) in your simulation, and issue a

small delay before the first CMALLC verb is issued by a client transaction
program. You might need to experiment with the delay value.

– In the network definition, define server-only logical units first, and define
server transaction programs before client transaction programs on mixed
logical units.

v WSim supports 17-byte partner LU names and 64-byte transaction program
names. However, WSim limits all names externalized on reports to 8 bytes. The
names on the reports are the network definition name fields specified on the
APPCLU and TP statements respectively.

v Exercise caution in defining CPI-C networks when you use the DIST network
definition statement, or the CYCLIC operand on the PATH statement. Do not use
the DIST statement or CYCLIC operand when defining server transaction
programs. Keep the following points in mind if you choose to use the DIST
statement or the CYCLIC operand when defining client transaction programs:
– Use one or more PATH statements when you define the CPI-C transaction

program to WSim.
– WSim executes the path or paths that define a transaction program, by

default, only one time. When WSim executes the last message deck in the last
path, the simulated transaction program terminates. If the scenario requires
multiple iterations of the transaction program paths, specify the TPREPEAT
operandon the TP statement.

– If individual message decks represent pieces of a transaction program, you
must not use the DIST statement or CYCLIC operand. Use of these options
makes sense only if each message deck represents a complete transaction
program.

– If each message deck in a path represents a complete transaction program,
you can use the DIST statement to execute different client transaction
programs according to the distribution pattern.

– If each message deck in a path represents a complete transaction program,
you can use the CYCLIC operandto cycle through each of the client TPs
specified in the PATH statement.

Scripting considerations
v WSim does not provide an automatic script generation facility for CPI-C

transaction programs. CPI-C scripts must be coded manually in either WSim
scripting language or in STL. It is recommended that STL be used. In STL, the
CPI-C parameters and values are predefined STL variables, making the coding of
CPI-C statements easier.

40 Creating Workload Simulator Scripts

v If you use STL to code the scripts, and you code CPI-C input parameters using
literal values or named constants, the STL translator generates device save area
or device counter references, or both, for the literal or constant values. The STL
translator requires a free device save area if you use string literals or named
constants, and a free device counter if you use integer literals or named
constants. If a free save area or counter is not available when required, the STL
translator issues error message ITP3027I or ITP3028I.

v Using network save areas, and network, line, or term counters allows sharing of
data across transaction programs. When sharing data, one transaction program
can change data another transaction program is using. This causes unexpected
results. Before changing a shared save area or counter, investigate the
implications to other transaction programs that may be sharing the same data.
Because timing of transaction program execution is difficult to predict, the point
in time a particular transaction program will be finished using a particular data
item may be unclear. If you are getting unexpected results when using shared
data, make sure one transaction program is not changing the data while another
one is still using it.

v When a transaction program terminates, all signal event actions, ON conditions,
and waits established by the transaction program are canceled. In addition, all
signal event actions, ON conditions, and waits that have the terminating
transaction program as an object are canceled.

v All general definition message generation statements are valid for CPI-C
simulations, except for the TEXT statement and input and output IF statements.
WSim ignores TEXT statements and input and output IF statements that are
specified in a CPI-C simulation. In addition, WSim ignores message generation
statements for SNA and special device support if they are specified in a CPI-C
simulation.

v All STL statements are valid for CPI-C simulations except the TYPE, TRANSMIT,
ONIN, and ONOUT statements. WSim ignores TYPE, ONIN, and ONOUT
statements if they are specified in a CPI-C simulation. Do not code the
TRANSMIT statement in a CPI-C simulation because it causes message
generation to be interrupted for the transaction program.

CPI-C architecture considerations
WSim differs from the CPI-C 1.1 architecture in the following ways:
v The maximum send length you can specify on mapped conversations is 32K-4

(32,763) instead of the 32,767 value specified by the architecture.
v WSim does not support the CM_SYNC_POINT conversation synchronization

level.

VTAM APPL coding considerations
Each simulated APPC logical unit defined in a network requires an active VTAM
APPL when WSim opens the ACB associated with the simulated APPC logical
unit. The VTAM APPL must not be in use by any other process when you start the
network. You define the VTAM APPL definition statement in the VTAMLST
dataset. Use operands on the VTAM APPL definition statement to specify the name
of the APPL and the authority of the APPL to use certain VTAM functions. You
must specify APPC=YES on the APPL statement.

A sample VTAM APPL definition statement for a CPI-C APPC LU is:
APPCLU1 APPL APPC=YES,EAS=29

Notes:

Chapter 4. Simulating CPI-C transaction programs 41

v For VTAM application definitions used to simulate CPI-C transaction programs,
do not specify SESSLIM=YES on the VTAMLST APPL statements.

v The EAS operand (estimated number of concurrent sessions) should be specified
with the lowest practical value in order to hold down the amount of CSA
storage VTAM allocates for the APPL. Values from EAS=1 to EAS=29 will
allocate the least amount of CSA storage.

Coordinating WSim, VTAM, and subsystem definitions
Because CPI-C transaction program simulations use simulated VTAM applications,
the coordination issues relevant to VTAM application simulations are also relevant
to CPI-C application simulations. You can find a discussion of these issues in
“Coordinating WSim, VTAM, and subsystem definitions” on page 23.

WSim support for CPI-C simulation requires VTAM Version 3 Release 2 or later.
The WSim CPI-C interface uses the VTAM LU 6.2 command interface (APPCCMD)
that was initially released in Version 3 Release 2.

To get the best performance on MVS, make WSim APF-authorized.

CPI-C transaction program network definition example
Figure 14 shows a complete network definition for a CPI-C transaction program
simulation. The figure includes a sample script coded in STL. Figure 15 on page 46
shows a functionally equivalent script coded in WSim scripting language. When
you use the WSim ISPF Interface to edit a new script, these sample scripts are
included in the list of model scripts provided.

Note: When you write your simulation script in STL, you can find the STL
definitions for the CPI-C statement parameters and their constant values in the
CPICVAR and CPICCON include members. These include members are described in
WSim Script Guide and Reference as STL Variable Declarations for CPI-C Verb
Parameters.

Coding CPI-C network definition and STL statements

/* CPI-C Transaction Program simulation */
@NETWORK
**
* Network Configuration: CPI-C Transaction Program simulation (CPIC) *
* *
* Description: This WSim script will simulate a CPI-C client *
* Transaction Program communicating with two CPI-C *
* Server Transaction Programs. The client sends *
* data to one server and receives data from the other. *
* The sync-level is "none" on the first conversation, *
* and "confirm" on the second conversation. *
* *
* To illustrate that a network-wide Side Information *
* Table can be overridden at the APPCLU level, the *
* network-wide table contains an entry that points *
* to a nonexistent TP. This entry is then overridden *
* by the APPCLU statement. *
* *
* Some values may need to be changed in this network in *
* order to operate in your environment. They are *
* indicated by the "==> " string. *

Figure 14. Network and STL definition for CPI-C TP simulation

42 Creating Workload Simulator Scripts

* *
* *
* Restrictions/Dependencies: *
* 1) The APPLID names used in this network (APPLID1 and APPLID2) *
* must be defined to VTAM and must be active. *
* *
* Graphical Representation of Network: *
* *
* APPCLU: APPLID1 APPCLU: APPLID2 *
* +----------------------+ +---------------------+ *
* | | | | *
* | +--------------+ | conversation 1 | +-------------+ | *
* | | ===========================> TP: TPSERV1 | | *
* | | | | mode=#inter | +-------------+ | *
* | | TP: TPCLIENT | | | | *
* | | | | conversation 2 | +-------------+ | *
* | | ===========================> TP: TPSERV2 | | *
* | +--------------+ | mode=#batch | +-------------+ | *
* | | | | *
* +----------------------+ +---------------------+ *
* *
* Notes: *
* 1. Conversation 1 uses mode name #INTER. The conversation *
* sync-level is "none". *
* 2. Conversation 2 uses mode name #BATCH. The conversation *
* sync-level is "confirm". *
* 3. The CNOS operand on the APPCLU1 definition is only required *
* if you want to control the number of sessions. If the operand *
* is not specified, sessions will be managed by WSim as required *
* by the simulation. *
* *
* *
**

--
* Network statement operands. *
--
CPIC NTWRK HEAD=’CPI-C NETWORK MODEL’,

ITIME=1, * Ntwrk interval rpt every minute *

--
* TP operands coded on the network statement. These values will *
* be the default for every TP in the network. *
--

TPSTATS=YES, * Keep stats for all TP instances *
CPITRACE=VERB * Trace CPI-C verbs in the log *

--
* Define a network-wide Side Information Table. *
--

SIDEINFO
SIDEENT DESTNAME=SERVER1,MODENAME=#INTER,

LUNAME=APPLID2,TPNAME=TPSERVER
SIDEENT DESTNAME=SERVER2,MODENAME=#BATCH,

LUNAME=APPLID2,TPNAME=TPSERV2
SIDEEND

--
* Define the Transaction Program paths. *
--
CLIENT PATH CLNTDCK * Define the CLIENT TP path *
SERVER1 PATH SERV1DCK * Define the SERVER1 TP path *
SERVER2 PATH SERV2DCK * Define the SERVER2 TP path *
--
--
* Define the network resources. *
* *
* ==> CHANGE the APPLID names APPLID1 and APPLID2 as needed to match *
* names in your environment. If you change APPLID2, also change *

Chapter 4. Simulating CPI-C transaction programs 43

* the LUNAME specification in the SIDEINFO and CNOS operands to *
* match this name. These names must be defined to VTAM. *
--
APPCLU1 APPCLU APPLID=APPLID1, * APPC LU; VTAM APPLID is APPLID1 *

SIDEINFO=((DESTNAME=SERVER1,MODENAME=#INTER,
LUNAME=APPLID2,TPNAME=TPSERV1)),

* * Override SERVER1 dest name *
CNOS=((LUNAME=APPLID2,MODENAME=#INTER,

SESSIONS=2,CWL=1,CWP=1))
* * Specify CNOS values *
TPC TP TPNAME=TPCLIENT, * TP name is TPCLIENT *

PATH=(CLIENT), * TP is defined by CLIENT path *
TPTYPE=CLIENT, * TP type is CLIENT *
INSTANCE=(1,1) * 1 initial TP instance *

APPCLU2 APPCLU APPLID=APPLID2 * APPC LU; VTAM APPLID is APPLID2 *
TPS1 TP TPNAME=TPSERV1, * TP name is TPSERV1 *

PATH=(SERVER1), * TP is defined by SERVER1 path *
TPTYPE=SERVER, * TP type is SERVER *
INSTANCE=(0,1) * No initial TP instances *

TPS2 TP TPNAME=TPSERV2, * TP name is TPSERV2 *
PATH=(SERVER2), * TP is defined by SERVER2 path *
TPTYPE=SERVER, * TP type is SERVER *
INSTANCE=(0,1) * No initial TP instances *

@ENDNETWORK
@EJECT
@PROGRAM=CPIC
@include cpicvar
@include cpiccon

CLNTDCK: msgtxt
/***
* STL deck defining the TPCLIENT Transaction Program. *
***/
say ’Transaction Program ’tpid() ’starting.’
/**/
/* Initialize and allocate a conversation with TPSERV1. */
/* Set the symbolic destination name to "SERVER1". */
sym_dest_name=’SERVER1’
/* Initialize the conversation. */
CMINIT (conversation_ID, sym_dest_name, return_code)
/* Allocate the conversation; the sync-level defaults to "none", */
/* and the conversation type defaults to "mapped". */
CMALLC (conversation_ID, return_code)
/* Setup the send buffer and length. */
send_buffer = ’LU’ appcluid()’, TP’ tpid()tpinstno()||,

’: Data sent from client to server.’
send_length = length(send_buffer)
/* Send data to TPSERV1. */
CMSEND (conversation_ID, send_buffer, send_length,,

request_to_send_received, return_code)
/* Deallocate the conversation with TPSERV1. */
CMDEAL (conversation_ID, return_code)
/**/
/* Initialize and allocate a conversation with TPSERV2. */
/* Set the symbolic destination name to "SERVER2". */
sym_dest_name=’SERVER2’
/* Initialize the conversation. */
CMINIT (conversation_ID, sym_dest_name, return_code)
/* Set the conversation sync-level to "confirm". */
CMSSL (conversation_ID, cm_confirm, return_code)
/* Allocate the conversation; the conversation type defaults to */
/* "mapped". */
CMALLC (conversation_ID, return_code)
/* Receive data from TPSERV2. */
CMRCV (conversation_ID, receive_buffer, 100, data_received,,

received_length, status_received,,
request_to_send_received, return_code)

44 Creating Workload Simulator Scripts

/* Confirm the data was received. */
CMCFMD (conversation_ID, return_code)
/* Receive the confirm deallocate status. */
CMRCV (conversation_ID, receive_buffer, 100, data_received,,

received_length, status_received,,
request_to_send_received, return_code)

/* Confirm the deallocate */
CMCFMD (conversation_ID, return_code)
say ’Transaction Program ’tpid() ’complete.’
say ’Simulation complete.’
endtxt

SERV1DCK: msgtxt
/***
* STL deck defining the TPSERV1 Transaction Program. *
***/
say ’Transaction Program ’tpid() ’starting.’
/* Accept the conversation with TPCLIENT. */
CMACCP (conversation_ID,,

return_code)
/* Receive data from TPCLIENT. */
CMRCV (conversation_ID,,

receive_buffer,,
100,,
data_received,,
received_length,,
status_received,,
request_to_send_received,,
return_code)

say ’Transaction Program ’tpid() ’complete.’
endtxt
SERV2DCK: msgtxt
/***
* STL deck defining the TPSERV2 Transaction Program. *
***/
say ’Transaction Program ’tpid() ’starting.’
/* Accept the conversation with TPCLIENT. */
CMACCP (conversation_ID,,

return_code)
/* Set requested length for receive. */
requested_length=100
/* Receive send status from TPCLIENT. */
CMRCV (conversation_ID,,

receive_buffer,,
requested_length,,
data_received,,
received_length,,
status_received,,
request_to_send_received,,
return_code)

/* Setup the send buffer and length. */
send_buffer = ’LU’ appcluid()’, TP’ tpid()tpinstno()||,

’: Data sent from server to client.’
send_length = length(send_buffer)
/* Send data to TPCLIENT. */
CMSEND (conversation_ID,,

send_buffer,,
send_length,,
request_to_send_received,,
return_code)

/* Request confirmation that the data was received. */
CMCFM (conversation_ID,,

request_to_send_received,,
return_code)

/* Deallocate the conversation with TPCLIENT. */

Chapter 4. Simulating CPI-C transaction programs 45

CMDEAL (conversation_ID,,
return_code)

say ’Transaction Program ’tpid() ’complete.’
endtxt

Coding CPI-C message generation decks
Figure 15 shows how you can code message generation decks that are functionally
equivalent to the STL decks shown in Figure 14 on page 42.

CLNTDCK MSGTXT
**
* Message deck defining the TPCLIENT Transaction Program. *
**
*
* Device save area usage:
* 1=conversation ID
* 2=destination name
* 3=send buffer
* 4=receive buffer
*
* Device counter usage:
* dc1=return code
* dc2=send length
* dc3=request-to-send received
* dc4=sync-level
* dc5=requested length
* dc6=data received
* dc7=received length
* dc8=status received
*

WTO (Transaction Program $TPID$ starting.)
*
**
* Initialize and allocate a conversation with TPSERV1. *
*
*
* Set the sumbolic destination name to "SERVER1".

DATASAVE AREA=2,TEXT=(SERVER1)
*
* Initialize the conversation.

CMINIT(1,2,DC1)
*
* Allocate the conversation; the sync-level defaults to "none",
* and the conversation type defaults to "mapped".
*

CMALLC(1,DC1)
*
* Setup the send buffer and length.

DATASAVE AREA=3,TEXT=(LU $APPCLUID$, TP $TPID$$TPINSTNO$:)+
(Data sent from client to server.) * Send buffer

SET DC2=LENG(3) * Send length
*
* Send data to TPSERV1.

CMSEND(1,3,DC2,DC3,DC1)
*
* Deallocate the conversation with TPSERV1.

CMDEAL(1,DC1)
*
**

* Initialize and allocate a conversation with TPSERV2. *
*
* Set the symbolic destination name to "SERVER2".

Figure 15. Message deck definition for CPI-C TP simulation

46 Creating Workload Simulator Scripts

DATASAVE AREA=2,TEXT=(SERVER2)
*
* Initialize the conversation.

CMINIT(1,2,DC1)
*
* Set the conversation sync-level to "confirm".

SET DC4=1 * Sync-level
CMSSL(1,DC4,DC1)

*
* Allocate the conversation; the conversation type defaults
* to "mapped".

CMALLC(1,DC1)
*
* Set requested length for receive.

SET DC5=100
*
* Receive data from TPSERV2.

CMRCV(1,4,DC5,DC6,DC7,DC8,DC3,DC1)
*
* Confirm the data was received.

CMCFMD(1,DC1)
*
* Receive the confirm deallocate status.

CMRCV(1,4,DC5,DC6,DC7,DC8,DC3,DC1)
*
* Confirm the deallocate

CMCFMD(1,DC1)
*

WTO (Transaction Program $TPID$ complete.)
WTO (Simulation complete.)

*
ENDTXT

SERV1DCK MSGTXT
**
* Message deck defining the TPSERV1 Transaction Program. *
**
*
* Device save area usage:
* 1=conversation ID
* 2=receive buffer
*
* Device counter usage:
* dc1=return code
* dc2=requested length
* dc3=data received
* dc4=received length
* dc5=status received
* dc6=request-to-send received
*

WTO (Transaction Program $TPID$ starting.)
*
* Accept the conversation with TPCLIENT.

CMACCP(1,DC1)
*
* Set requested length for receive.

SET DC2=100
*
* Receive data from TPCLIENT.

CMRCV(1,2,DC2,DC3,DC4,DC5,DC6,DC1)
*

WTO (Transaction Program $TPID$ complete.)
*

ENDTXT

SERV2DCK MSGTXT
**
* Message deck defining the TPSERV2 Transaction Program. *
**

Chapter 4. Simulating CPI-C transaction programs 47

*
* Device save area usage:
* 1=conversation ID
* 2=receive buffer
* 3=send buffer
*
* Device counter usage:
* dc1=return code
* dc2=requested length
* dc3=data received
* dc4=received length
* dc5=status received
* dc6=request-to-send received
* dc7=send length
*

WTO (Transaction Program $TPID$ starting.)
*
* Accept the conversation with TPCLIENT.

CMACCP(1,DC1)
*
* Set requested length for receive.

SET DC2=100
*
* Receive send status from TPCLIENT.

CMRCV(1,2,DC2,DC3,DC4,DC5,DC6,DC1)
*
* Setup the send buffer and length.

DATASAVE AREA=3,TEXT=(LU $APPCLUID$, TP $TPID$$TPINSTNO$:)+
(Data sent from server to client.) * Send buffer

*
SET DC7=LENG(3) * Send length

*
* Send data to TPCLIENT.

CMSEND(1,3,DC7,DC6,DC1)
*
* Request confirmation that the data was received.

CMCFM(1,DC6,DC1)
*
* Deallocate the conversation with TPCLIENT.

CMDEAL(1,DC1)
*

WTO (Transaction Program $TPID$ complete.)
*

ENDTXT

48 Creating Workload Simulator Scripts

Chapter 5. Simulating TCP/IP devices

This chapter discusses how to use WSim to simulate TCP/IP client applications.
These applications can represent clients using Telnet 3270, 3270E, 5250, or NVT
protocol,File Transfer Protocol (FTP), orSimple TCP or UDP transmit/receive
protocol. This chapter:
v Describes how WSim interfaces to the IBM TCP/IP product to provide the

TCP/IP support.
v Provides general information that applies to all of the supported protocols.
v Discusses the specific support for each protocol.

Using the TCP/IP connection protocol
WSim provides native support of multiple client applications that run “on top” of
TCP/IP; that is, TCP/IP handles all routing and delivery between the WSim host
and the system under test. WSim communicates directly to TCP/IP on the local
host to establish a connection with the server on the system under test.

When available for the TCP/IP instance, as specified by the TCPIP operand, WSim
uses the TCP/IP High Performance Native Sockets API instead of the IUCV API.
This improves performance and provide compatibility with future releases of the
TCP/IP product.

Simulating TCP/IP clients
You can simulate TCP/IP clients to test application programs and network
resources. Because WSim simulates only clients, it always initiates the primary
connection for each client. WSim closes the connection whenever the TCP/IP
server closes it or when a logical error is detected. For the Simple TCP and UDP
protocol, the connection can also be closed at the direction of your script. For
Telnet 3270, 3270E, 5250, NVT, and FTP simulations, connections are established
before any messages are generated and automatically restarted 30 seconds after
they are closed, unless the simulated client was quiesced by your script or by an
operator command. For Simple TCP and UDP simulations, connections are
established after a message to be transmitted was generated, and reestablished
whenever a subsequent message is available and an earlier connection was closed.

You can use the ALTER Operator command to change the server address to which
the next connection for a simulated client is to be made. You do this by using the
SERVADDR operand of ALTER. You can also use the QUIESCE and RELEASE
functions to inhibit or allow further connections. For example, you might quiesce a
simulated client in a script when generating a “logoff” sequence, and then release
it later by operator command to allow a reconnection and subsequent “logon”.

Defining TCP/IP application configurations
Figure 16 on page 50 illustrates the logical configuration of a network that
simulates TCP/IP clients accessing a TCP/IP server. You would use this logical
configuration to test client applications, to see how many clients your TCP/IP
network can support, or to see the impact of many clients on your TCP/IP
network.

© Copyright IBM Corp. 1989, 2015 49

A physical configuration that corresponds to this logical configuration is shown in
Figure 17.

In this configuration, WSim runs as an application program of IBM TCP/IP for
MVS. WSim uses the socket interface to send traffic to your TCP/IP network.

Simulated by WSim

Figure 16. TCP/IP network—logical configuration

WSim

Figure 17. TCP/IP network—physical configuration

50 Creating Workload Simulator Scripts

WSim does not drive any hardware directly when executing as a TCP/IP
application. Instead, it uses the TCP/IP socket interface to send and receive
messages, eliminating the need for any extra hardware resources. To run as a
TCP/IP application program without a communication controller, WSim only
requires a currently supported release of IBM TCP/IP. Refer to TCP/IP Planning and
Customization for MVS for TCP/IP hardware requirements.

Using TCP/IP client simulation
You can use the TCP/IP application configuration to simulate TCP/IP clients to
test application programs and network resources. For example, you can use the
TCP/IP application configuration to simulate clients accessing your mainframe
applications through a TCP/IP network.

Figure 17 on page 50 shows WSim in a different host processor than the system
under test. This is not a requirement. WSim can access servers or applications in
the same host or a different host. Nor does the remote host necessarily need to be
a S/390 or use IBM TCP/IP. WSim uses the transport mechanisms of TCP/IP and
the rest of the network so that WSim can send traffic to any other node in the
TCP/IP network.

Coding the network definition
To define a TCP/IP network, code TCPIP and DEV statements. Code TCPIP
statements to define the interface to the IBM TCP/IP product, and code DEV
statements to define TCP/IP clients to be simulated.

An example of a network definition for simulating TCP/IP clients is shown below.
*--
TN3270 NTWRK HEAD=’TCPIP TEST NETWORK’,

THKTIME=UNLOCK,
UTI=100,
TCPNAME=TCPIP,
SERVADDR=9.67.6.1

*--
TN3270P PATH TN3270S
TN3270EP PATH TN3270ES
TN3270PP PATH TN3270PS
TN5250P PATH TN5250S
TNNVTP PATH TNNVTS
FTPP PATH FTPS
STCPP PATH STCPS
SUDPP PATH SUDPS
*--
TCONN1 TCPIP
TN3270D1 DEV TYPE=TN3270,PATH=(TN3270P) * Telnet 3270 device
TN3270E1 DEV TYPE=TN3270E,PATH=(TN3270EP) * Telnet 3270E device
TN3270P1 DEV TYPE=TN3270P,PATH=(TN3270PP) * Telnet 3270P device
TN5250D1 DEV TYPE=TN5250,PATH=(TN5250P) * Telnet 5250 device
TNNVTD1 DEV TYPE=TNNVT,PATH=(TNNVTP) * Telnet NVT device
FTPD1 DEV TYPE=FTP,PATH=(FTPP) * FTP device
STCPD1 DEV TYPE=STCP,PATH=(STCPP) * STCP device
SUDPD1 DEV TYPE=SUDP,PATH=(SUDPP) * SUDP device

Defining the TCP/IP interface connection
To define a TCP/IP connection, code the TCPIP statement. You can code several
TCPIP statements within a network definition to define several TCP/IP
connections.

Code the following operands on the TCPIP statement to define general simulation
characteristics of the TCP/IP connection:

Chapter 5. Simulating TCP/IP devices 51

v BUFSIZE operand specifies buffer size. The value specified for BUFSIZE
indicates the maximum size individual message that can be generated for
transmission by the simulated clients. It also indicates the maximum amount of
data to be read from the TCP/IP product at one time (except when reading file
data for FTP simulation, where a maximum value of 32000 is always used).

v FTPPORT operand specifies the default port number for FTP clients.
v MLEN operand specifies the maximum number of data characters to be written

to the log data set for each data transfer.
v MLOG operand specifies whether this device uses the message logging function.
v STCPPORT operand specifies the default port number for STCP clients.
v SUDPPORT operand specifies the default port number for SUDP clients.
v TCPNAME operand specifies the name of the TCP/IP virtual machine or

address space on the local host.
v TNPORT operand specifies the default port number for Telnet 3270, 3270E, 5250,

or NVT clients.

See WSim Script Guide and Reference for complete statement definitions.

Defining TCP/IP clients
To define TCP/IP clients, code DEV statements. You can code several DEV
statements under a TCPIP network definition statement to define several clients on
a TCP/IP connection.

WSim allows any number of clients to be defined following a single TCPIP
statement, but the number you code should not exceed the maximum number of
sockets that the IBM TCP/IP product supports on a single connection.If you exceed
the maximum, the additional DEVs do not execute. In practice, you might
experience better performance by using multiple TCP/IP connections and keeping
the number of devices below the maximum. To help avoid immediate congestion
on a foreign host, use a random initial delay when starting devices.

Code the following operands on the DEV statement to define general simulation
characteristics of the simulated client:
v ASSOC operand specifies whether the ASSOCIATE command is to be used

when representing a device-type that represents a printer.
v ATRABORT operand specifies whether the current message generation deck, STL

procedure, or path is aborted when the simulated client enters automatic console
recovery.

v ATRDECK operand specifies the name of the message generation deck or STL
procedure to be called when the simulated client enters automatic console
recovery.

v CRDATALN operand specifies the length of the data to be reported in the Last
Message Transmitted and Last Message Received fields for an inactivity report, a
response to the Q (Query) operator command, or when the simulated client is in
console recovery.

v DELAY operand specifies the value to be multiplied by the active UTI to define
the default intermessage delay.

v FRSTTXT operand defines the first message generation deck or STL procedure to
use when you start the network.

v FUNCTS operand specifies the list of 3270 options supported for the specific
FUNCTIONS REQUEST command that the sender would like to see supported
on this session.

52 Creating Workload Simulator Scripts

v IUTI operand specifies the name of a UTI used in calculating all delays for this
client.

v LOCLPORT operand specifies the local port number to be used by a Simple TCP
or Simple UDP device.

v MAXCALL operand specifies the maximum number of outstanding message
generation deck or STL procedure calls for this client.

v MSGTRACE operand specifies whether message generation trace records for this
client are written to the log data set.

v PATH operand specifies the PATH statements for message generation deck or
STL procedure selection to be referenced by this client in controlling message
generation. To iterate a particular path, append *n to the name, where n is the
number of iterations that is needed.

v PORT operand specifies the TCP/IP port that WSim is to use when establishing
a connection.

v PRTSPD operand specifies the speed at which the device being simulated will
print the data received.

v QUIESCE operand specifies whether the client is automatically marked quiesced
during network initialization.

v RESOURCE operand specifies the TN3270E LU name to connect or associate
with.

v RSTATS operand specifies whether online response time statistics are
accumulated for this client, and reported when you issue the W (RSTATS Query)
operator command.

v SAVEAREA operand specifies the number and size of the static save areas to be
allocated for input data save and recall.

v SEQ operand specifies the initial value for the sequence counter at network
initialization or after a network reset.

v SERVADDR operand specifies the host address to which you want to connect in
a TCP/IP simulation.

v STCPHCLR operand specifies Half-Close Receive support for a Simple TCP
device.

v STCPHCLX operand specifies Half-Close Transmit support for a Simple TCP
device.

v STCPROLE operand specifies whether a device is to act as a client or server.
v STLTRACE operand specifies whether STL trace records for this client are

written to the log data set.
v THKTIME operand specifies when the message delay starts.
v TYPE operand specifies the TCP/IP client type (Telnet 3270, 3270E, 5250, or NVT

client, FTP client, or Simple TCP or UDP client) represented by this DEV
statement.

v USERAREA operand defines an area of storage to be used for a scratch pad or
user exit workarea.

See WSim Script Guide and Reference for complete statement definitions.

Simulating Telnet 3270 clients
This section provides information that is unique for Telnet 3270 and 3270E client
simulations. Code TYPE=TN3270 on the DEV statement to designate the client as
Telnet 3270. Code TYPE=3270E on the DEV statement to designate the client as
Telnet 3270E. “Defining display characteristics” on page 54 discusses the way you

Chapter 5. Simulating TCP/IP devices 53

111
111

define the characteristics of the display, and “Defining 3270 characteristics” defines
the 3270 terminal simulation characteristics.

WSim communicates directly to TCP/IP on the local host to establish a session
with the Telnet 3270 or 3270Eserver on the system under test. During this session
establishment, WSim negotiates with the server by asserting and confirming
options that specify 3270 data streams are to be used. As part of negotiations with
the server, WSim negotiates the following options:

TRANSMIT-BINARY Do not interpret data being transmitted as ASCII

TERMINAL-TYPE Use a 3270 terminal type based on the extended function capability
and display size being simulated. Default is IBM-3278-2-E.

END-OF-RECORD Use the END-OF-RECORD flag (X'EF') as the data delimiter

When negotiations are complete, a Telnet 3270 session is established with the
system under test. WSim then begins message generation as with other types of
simulated 3270 devices.

Defining display characteristics
Code the following operands on the DEV statement to define display simulation
characteristics of the simulated Telnet 3270 or 3270E client:
v DISPLAY operand specifies the default and alternate screen sizes for displays.
v LOGDSPLY operand specifies whether Telnet 3270 or 3270E client display

buffers are automatically written to the log data set for formatting by the Loglist
Utility.

v PROTMSG operand specifies whether the field-protected message ITP403I is
written to the log data set.

Defining 3270 characteristics
Code the following operands on the DEV statement to define 3270 terminal
simulation characteristics of the simulated Telnet 3270 or 3270E client:
v ALTCSET operand specifies whether the 3270 APL/TEXT character set is

supported.
v APLCSID operand specifies the character set ID for the 3270 APL character set.
v BASECSID operand specifies the character set ID for the 3270 base character set.
v CCSIZE operand specifies the display character cell size for a Telnet 3270 or

3270E client that extended function support.
v COLOR operand specifies whether seven color display support is provided for a

Telnet 3270 or 3270E client that extended function support.
v DBCS specifies whether double-byte character set (DBCS) is supported.
v DBCSCSID specifies the character set ID for the 3270 DBCS character set.
v EXTFUN operand specifies whether extended function support is provided for a

Telnet 3270 or 3270E client.
v FLDOUTLN operand specifies whether field outlining support is provided for a

Telnet 3270 or 3270E client.
v FLDVALID operand specifies whether field validation support is provided for a

Telnet 3270 or 3270E client that extended function support.
v HIGHLITE operand specifies whether highlighting support is provided for a

Telnet 3270 or 3270E client that extended function support.

54 Creating Workload Simulator Scripts

v MAXNOPTN operand specifies the maximum number of display partitions that
can be defined.

v MAXPTNSZ operand specifies the maximum size of a partition in bytes.
v PS operand specifies the number and types of Programmed Symbols character

sets for a Telnet 3270 or 3270E client that extended function support.
v UASIZE operand specifies the size of the display screen in PELs (picture

elements).
v UOM operand specifies the unit of measurement for the distance between PELs

on the screen of a display.

Simulating Telnet 5250 and NVT clients
WSim now simulates Telnet 5250 clients connecting to a Telnet 5250 server. To
simulate a Telnet 5250 client, code the following operand in your network
definition:
TYPE=TN5250

WSim now simulates Telnet Line Mode Network Virtual Terminal clients
connecting to a Telnet server. The client looks like a Network Virtual Terminal. The
WSim user must append carriage control and line feed characters at the end of
each data stream to be sent. However, the incoming data is translated from ASCII
to EBCDIC and the outgoing data is translated from EBCDIC to ASCII. Line mode
does not provide screen images. No buffers are maintained in the WSim line mode
support. For logic testing, only the incoming data streams are checked.

Simulating FTP clients
This section provides information that is unique for FTP client simulations. Code
TYPE=FTP on the DEV statement to designate that the client uses FTP protocol.
“Defining FILE characteristics” discusses the way that you define a file, and
“Generating FTP commands and messages” on page 56 discusses how to generate
FTP commands.

Defining FILE characteristics
Specify a FILE definition statement in the general definition statements section of
your network definition to indicate the characteristics of a file to be simulated. For
performance and convenience reasons, WSim does not transfer real files. Instead,
WSim uses FILE statements to create simulated files.

Data received as files is logged and then discarded, rather than being saved as
files.

You can code the following operands on the FILE statement to define the
simulation characteristics of the file:
v DATA operand specifies a user table (UTBL or MSGUTBL) from which the data

for this file is to be obtained.
v NUMREC operand specifies the number of records to be sent as part of this file.
v TYPE operand specifies whether the data is to be treated as EBCDIC (E) or

ASCII (A).
v RECFM operand specifies whether the records in this simulated file are to be

considered variable (V) or fixed (F) length records.
v RECLEN operand specifies the length (for fixed-length records) or maximum

length (for variable length records) of each record that is a part of this file.

Chapter 5. Simulating TCP/IP devices 55

v MINLEN operand specifies the minimum length record to generate when
RECFM=V and DATA is not specified.

Generating FTP commands and messages
WSim support for FTP is structured so that FTP commands are generated using the
TYPE (in STL) or TEXT statements in the same way that messages to be
transmitted are generated for other terminal types. Rather than transmitting this
data directly, the FTP support interrogates the data and interprets it as an FTP
command. The WSim FTP support builds the data transmitted to the FTP server.
This data might consist of one or more server commands and associated actions.
Some commands might not result in any transmission to the server at all, but
might set local indicators only, where others might involve several transactions.

WSim makes all data received from the server available for inspection using logic
testing statements (IF, ONIN). In some cases, WSim provides a message to the
operator as if it had been received. Such a message is also available for logic
testing. This is important when no server response can be expected for a given
command. At the end of each file transfer, WSim builds a message indicating
transfer size and rate and treats the message as if it had been received. All such
messages built by WSim begin with a standard message prefix and number that
can be used in logic testing. FTP support uses message numbers ITP482I through
ITP485I and ITP487I through ITP489I. Refer to WSim Messages and Codes for further
information on these messages.

WSim supports FTP commands that are a subset of those supported by the IBM
TCP/IP products for MVS. WSim can simulate FTP clients that interact with real
FTP servers, but it does not attempt to provide a full function FTP. WSim provides
a facility to enable the loading and testing of a network that uses FTP protocols,
but not a facility for transferring and storing real files using FTP.

Because of its operating environment and its objectives, WSim does not attempt to
support FTP commands that are strictly local in nature. In addition, the commands
that reference local files to be transferred require that the file name match the
name of a FILE statement. You do not need to specify a local file name on
commands that transfer files to WSim. Where remote foreign files or directories are
required, specify them in a format acceptable to the remote FTP server.

Table 1 shows the subset of FTP commands supported by WSim, their minimum
abbreviations, their acceptable operands, and a brief description of their functions.
Some additional notes about the operands follow the table. Additional information
about the general function of these commands can be found in the IBM TCP/IP for
MVS User's Guide.

Table 1. WSim FTP subcommand summary

Subcommand Minimum
Abbreviation

Operands Description

ACCOUNT AC account_information Sends host-dependent account information.

APPEND AP WSIM_file [foreign_file] Appends a file defined by a FILE
statement to a file on the server.

ASCII AS Sets the file transfer type to ASCII.

BINARY B Sets the file transfer type to IMAGE.

CD CD foreign_directory Changes the working directory on the
server.

56 Creating Workload Simulator Scripts

Table 1. WSim FTP subcommand summary (continued)

Subcommand Minimum
Abbreviation

Operands Description

CLOSE CL Disconnects from the server.

CWD CW foreign_directory Changes the working directory on the
server.

DELETE DELE foreign_file Deletes a file on the server.

DIR DI [foreign_directory] Retrieves the directory entries for files on
the server.

EBCDIC EB Sets the file transfer type to EBCDIC.

GET G foreign_file Transfers the data from a file on the server,
but does not save it.

LS LS [foreign_directory] Retrieves the names of files on the server.

MKDIR MK foreign_directory Creates a directory on the server.

MODE MO B | S Specifies the file transfer mode as Block or
Stream.

NOOP NO Checks whether the server is still
responding.

PASS PA foreign_password Supplies a password to the server.

PUT PU WSIM_file [foreign_file] Transfers the FILE data defined by a FILE
statement to a file on the server.

PWD PW Retrieves the name of the active working
directory on the server.

QUIT QUI Disconnects from the server.

QUOTE QUO string Sends an uninterpreted string of data to
the server.

RENAME REN foreign_file new_foreign_file Renames a file on the server.

SENDPORT SENDP Enables or disables automatic transmission
of the PORT subcommand.

SENDSITE SENDS Enables or disables automatic transmission
of the SITE subcommand.

SITE SI foreign_site_data Sends information to the server using
site-specific commands.

STATUS STA Retrieves status information from the
server.

STRUCT STR Sets the file transfer structure.

SUNIQUE SU Toggles the storage methods.

SYSTEM SY Retrieves the name of the server's
operating system.

TYPE TY A | E | I Specifies the file transfer type as ASCII or
EBCDIC or IMAGE.

USER U user_name Identifies the user to the server.

Chapter 5. Simulating TCP/IP devices 57

Table 1. WSim FTP subcommand summary (continued)

Subcommand Minimum
Abbreviation

Operands Description

Notes:

v WSIM_file indicates a place where the name of a FILE statement within the active Network Definition must be
coded.

v Use the format required by the remote FTP server for each operand identified as a foreign_file or foreign_directory.
These operands are passed as specified to that server.

v If no foreign_file is specified on the PUT or APPEND commands, WSim provides a name of the form
WSIM_file.$DEFAULT.

v All commands and responses are translated to or from ASCII code. File data that is associated with the commands
is translated when required.

v When a simulated file is to be transferred, WSim generates a minimal SITE command unless this function was
toggled off using the SENDSITE command. This SITE command specifies a record format and, if possible and
necessary, a logical record length using the MVS format. If other SITE information is needed, a separate SITE
command can be sent before the PUT. Specifically, the automatically built SITE command has one of the following
formats:

– If RECFM=V is specified or defaulted,

SITE VARrecfm RECFM=VB LRECL=vlen

where vlen is the value specified by RECLEN plus four, unless RECLEN was not coded or the value would be
greater than 32756. In that case LRECL is omitted.

– If RECFM=F is specified,

SITE FIXrecfm flen RECFM=FB LRECL=flen

where flen is the value specified by RECLEN. If flen is greater than 32760, the LRECL specification is omitted.

v The amount of formatting and translation done by WSim for the simulated files it transfers depends upon the
specified or assumed characteristics of the designated FILE and the MODE and transfer TYPE in effect at the time
the PUT or APPEND is issued.

If Block mode is specified, WSim inserts a 3-byte block header in front of each logical record transmitted. If Stream
mode is specified and the file transfer type is ASCII or EBCDIC, WSim inserts an appropriate end of record
indicator at the end of each record (CRLF for ASCII transfers and NL for EBCDIC transfers). No end of record
indication is inserted if the transfer type is Image.

Data translation occurs if the transfer type is ASCII and the FILE data type is EBCDIC, or the transfer type is
EBCDIC and the FILE data type is ASCII. All data transmitted on the command connection is translated to ASCII
and all data received on the command connection is translated to EBCDIC.

Simulating simple TCP clients
This section provides information that is unique for Simple TCP client simulations.
Code TYPE=STCP on the DEV statement to designate the device as Simple TCP
client.

This type of simulation can be useful for testing a wide variety of server types and
protocols, but it requires knowledge of the structure of the messages sent and
received for the protocols being used.

As with the other TCP/IP protocols, the IBM TCP/IP product handles all of the
routing and delivery of messages transmitted and received for Simple TCP clients.
WSim uses basic socket calls to establish and close connections to a server, and it
sends and receives data on these connections.

Simple TCP Client support provides a means of simply sending user-defined
messages and receiving server-transmitted messages via TCP/IP connections

58 Creating Workload Simulator Scripts

without any manipulation of the data other than that provided by the script. The
script can also specify opening and closing of the connections to the server.

Unlike for Telnet 3270, 3270E, 5250, NVT, and FTP simulations, WSim does not
establish a connection for Simple TCP until a message was generated and is
available to send. At that point WSim obtains a socket and initiates a connection to
the server and port specified by the DEV operands. After the connection is made,
WSim transmits the data. The connection is then available for receipt of data from
the server or additional transmission of data.

All data transmitted and received is available for logic testing using IF or ONOUT
and ONIN scripting statements. It is then discarded. If the script generates a null
message, WSim interprets it as a signal to close the connection to the server. When
a null message is received indicating that the server closed the connection, this
message is available for logic testing just as other messages.

Limited server
For STCP devices, you can specify whether the device is to act as a client or server.
If specified as a server, the device listens for a connection before any messages can
be generated. In most cases, the script is also set up to wait for a received data
message before generating a response, however, the only requirement is to wait for
the connection. In order for STCP devices to perform the server role, a local port
number must be specified. To specify whether an STCP device is to act as a server
or client, code the following operand in your network definition:
STCPROLE=CLIENT|SERVER

where the value specified indicates the role to be performed. CLIENT is the
default.

Note: This operand can only be specified on a DEV statement associated with a
TCPIP statement.

The exit routine that can be used to glean the address information from received
data and set the address information for data to be transmitted is ITPGSIPA. This
exit can be used as an input user exit to retrieve the full address of the source of
the last data received for Simple UDP or Simple TCP simulated devices or as a
message generation exit to set the full address to be used for the next message to
be transmitted for SUDP devices or for the next connection established for STCP
devices. When called as an input exit (specified by INEXIT on the NTWRK
statement), ITPGSIPA saves the full INET address for the message being received
by Simple TCP or Simple UDP terminals in network save area 13. The address is in
the form used by the socket interface, which is as follows:

Table 2. INET address format

Offset Length Description

0 2 Address Family

2 2 Port (AF_NET=0002)

4 4 IP Address

8 8 Binary Zeros

When called as a Message Generation exit (USEREXIT STL statement or EXIT
statement in WSim scripting language), ITPGSIPA moves the INET address from
network save area 13 into the internal WSim control block so that the new address

Chapter 5. Simulating TCP/IP devices 59

will be used for the next message transmitted (SUDP) or the next connection
(STCP). ITPGSIPA assumes that the INET address exists in the save area in the
format described in Table 2 on page 59.

Simulating simple UDP clients
WSim supports simulation of Simple UDP terminals. The terminal type provides
simple client UDP support in WSim. To simulate a Simple UDP terminal, code the
following operand in your network definition:
TYPE=SUDP

SUDP terminal simulation is the same as simple TCP terminal simulation other
than supporting UDP instead of TCP protocols.

60 Creating Workload Simulator Scripts

Chapter 6. Simulating SNA resources and subareas

This chapter discusses how to use WSim to simulate Systems Network Architecture
(SNA) resources. The first part of this chapter briefly explains how WSim supports
SNA simulations. It then explains how to define SNA terminals. Instructions and
examples show how to code SNA resources within the host. This chapter discusses
how resources are activated and deactivated in SNA simulations and how WSim
processes SNA request and response units (RUs).

How WSim processes request/response units
This section discusses how WSim processes request/response units (RUs) sent to
and from the system under test during LU-LU sessions.

Request/response units in terminal simulations
If a WSim logical unit is in session with a logical unit in the system under test,
normal data traffic between the two LUs can occur in addition to the traffic
between the logical units and VTAM. The requests and responses processed during
a session fall into 3 categories:
v Session control (SC)
v Data flow control (DFC)
v Function management data (FMD).

Messages from each of these categories contain command codes in the first byte of
the RU. The FMD category also includes messages that contain user data in the RU
rather than SNA commands. Table 3 through Table 5 on page 62 list the SNA
commands that can be sent or received by WSim when simulating terminals in the
same domain as the system under test.

Table 3. Session control commands and responses

RU Request
Code (hex)

Command Name Sent by WSim Received by
WSim

31 Bind Session (BIND) X

32 Unbind Session (UNBIND) X

A0 Start Data Traffic (SDT) X

A1 Clear (CLEAR) X

A2 Set and Test Sequence Numbers
(STSN)

X X

A3 Request Recovery (RQR) X

Table 4. Data flow control commands and responses

RU Request
Code (hex)

Command Name Sent by WSim Received by
WSim

04 Logical Unit Status (LUSTAT) X X

05 Ready to Receive (RTR) X

70 Bracket Initiation (SBI) X X

71 Stop Bracket Initiation (SBI) X X

80 Quiesce at End of Chain (QEC) X X

© Copyright IBM Corp. 1989, 2015 61

Table 4. Data flow control commands and responses (continued)

RU Request
Code (hex)

Command Name Sent by WSim Received by
WSim

81 Quiesce Complete (QC) X X

82 Release Quiesce (RELQ) X X

83 Cancel (CANCEL) X X

84 Chase (CHASE) X X

C0 Shutdown (SHUTD) X

C1 Shutdown Complete (SHUTC) X

C2 Request Shutdown (RSHUTD) X

C8 Bid (BID) X

C9 Signal (SIG) X X

F8 Pseudobid (PSEUDOBID) X

Table 5. Function management data and network services commands and responses

RU Request
Code (hex)

Command Name Sent by WSim Received by
WSim

010681 Initiate® Self, Format 0 (INIT-SELF) X

010683 Terminate Self, Format 0
(TERM-SELF)

X

810620 Notify (SSCP-->LU, LU-->SSCP)
(NOTIFY)

X X

810629 Cleanup (CLEANUP) X

Receiving messages
When a simulated SNA resource (LU) receives a message from the system under
test,WSim performs the following series of functions for the data:
1. Logs the message.
2. Passes the message to the network user exit.
3. Performs internal WSim processing on the message.
4. Passes the message to the logic testing routine.

When a WSim logical unit receives an SNA command or command response (SC,
DFC, or FMD(NS)), it updates any applicable SNA states and saves any
information from the message that may be used later. For example, the session
rules defined in a BIND command are remembered by a WSim LU for reference
throughout a session. The WSim LU enforces all BIND session rules on all received
data, such as RU chaining, bracket states, and types of responses to be sent. A
WSim LU automatically builds and sends a response RU for any SNA command
received.

When a WSim LU receives an FM data request, it processes the information in the
SNA headers (TH and RH) to update its state values. For most SNA terminals,
WSim does not perform any automatic processing on the user data in an FMD RU.
You can process the data in a user exit, or you can perform logic tests on the data
using the IF statements.WSim does provide complete RU processing for the 3270
and 5250 display terminals. A received data stream is processed for an SNA
display terminal by analyzing the commands and orders in the data, and by
maintaining a screen image buffer in storage for the terminal.

62 Creating Workload Simulator Scripts

When WSim is ready to build an SNA response for an FMD request received by an
LU, it checks to see if you have coded a value for the PRTSPD operand for the LU.
This operand specifies the speed at which the simulated terminal prints the data
received. If the PRTSPD value exists, a delay is calculated and observed before
sending the response; otherwise, the response is sent immediately.

After WSim has performed all of its internal processing on a received message, the
message is passed to the logic test routine so that you can make decisions affecting
message generation based on the received data.

Transmitting generated messages
When trying to generate a message for a specific LU, WSim first checks for an
SNA response that must be sent because of a request previously received by the
LU. If no SNA response is pending for the terminal, WSim attempts to generate an
SNA command for the LU.WSim can generate a network services, session control,
or data flow control command depending on the current state of the LU as
determined by the previous message transfers in the session.

If an LU does not have a pending SNA response and a command cannot be
generated, WSim attempts to invoke message generation. All of the normal
conditions for entry to message generation must be met by the LU. (These
conditions are defined in Part 3, “Coding message generation statements,” on page
105.) In addition, the LU must be in the correct SNA state for transmitting data. If
message generation can be entered for the LU, WSim builds default SNA headers
for the message and then processes the statements in your message generation
deck until a message has been generated. The LU type and the current state of the
LU determine the contents of the default headers. You can use the TH and RH
statements to alter the default SNA headers built by WSim and to control chaining.
See Part 3, “Coding message generation statements,” on page 105 for information
about using these statements. If you are using STL and want to modify the TH and
RH or control chaining, refer to WSim Script Guide and Reference for more
information.

Request/response units in SNA simulations
Below lists the SNA commands that can be sent and received by WSim when
performing SNA simulations.

Session Control

Code (hex) Command Name

31 Bind Session (BIND)

32 Unbind Session (UNBIND)

A0 Start Data Traffic (SDT)

A1 Clear(CLEAR)

A2 Set and Test Sequence Numbers (STSN)

A3 Request Recovery (RQR)

Data Flow Control

Code (hex) Command Name

04 Logical Unit Status (LUSTAT)

05 Ready to Receive (RTR)

70 Bracket Initiation Stopped (BIS)

Chapter 6. Simulating SNA resources and subareas 63

Data Flow Control

Code (hex) Command Name

71 Stop Bracket Initiation (SBI)

80 Quiesce at End of Chain (QEC)

81 Quiesce Complete (QC)

82 Release Quiesce (RELQ)

83 Cancel(CANCEL)

84 Chase(CHASE)

C0 Shutdown(SHUTD)

C1 Shutdown Complete (SHUTC)

C2 Request Shutdown (RSHUTD)

C8 Bid(BID)

C9 Signal(SIG)

F8 Pseudobid(PSEUDOBID)

Function Management Data, Network Services

Code (hex) Command Name

010681 Initiate Self, Format 0 (INIT-SELF)

010683 Terminate Self, Format 0 (TERM-SELF)

810601 Control Initiate (CINIT)

810620 Notify (SSCP-->LU, LU-->SSCP) (NOTIFY)

810629 Cleanup(CLEANUP)

64 Creating Workload Simulator Scripts

Chapter 7. Simulating specific devices

This chapter provides instructions for simulating devices that require special
coding considerations. These special considerations include factors such as
character set identification and function restrictions, and what types of coding you
must include in network definitions to simulate certain features of specific devices.

The remaining sections in this chapter discuss the following devices:
v IBM 3270 Information Display System
v IBM 3290 Information Panel
v IBM 5250 Display System

IBM 3270 Information Display System
When simulating a 3270 display system, WSim has certain requirements regarding
character set identification and the Display Monitor Facility. There are also certain
restrictions on 3270 functions thatWSim can simulate.

3270 character set identification
The Coded Graphic Character Set Global Identifier (CGCSGID), that is, character
set ID, for the simulated 3270 character sets can be specified using the BASECSID,
APLCSID, and DBCSCSID operands. The character set IDs are passed to the host
application program in response to a 3270 Query request. NLS enabled application
programs use the character set IDs when referencing panels formatted uniquely for
different countries.

Display Monitor Facility
With Display Monitor Facility, you can view simulated 3270 display images on a
monitoring 3270 display during a simulation run. Refer to WSim User's Guide for a
detailed description of the Display Monitor Facility.

Restrictions
WSim does not support the following 3270 functions as an LU Type 2:
v Vector-to-Rastor Graphics (3179-GX and 3192-G)
v Image Support
v PC File Transfer.

Other LU types, for example LU Type 0, can be used if the appropriate data stream
is coded or generated using the Script Generator Utility.

IBM 3290 Information Panel
The IBM 3290 Information Panel can display up to four concurrent logical
terminals on one physical display screen. Each of these terminals is an independent
logical unit as far as the host applications are concerned. Each logical unit has a
unique address.

The 3290 simulation is based upon the logically separate terminals. You define each
of the logical terminals as individual logical units and associate them as a set

© Copyright IBM Corp. 1989, 2015 65

through your message generation decks. You can simulate 3290 devices using SNA
protocol by coding one of the following definition:
LU LUTYPE=LU2

You can code an SNA 3290 as an LU2 logical unit in a VTAMAPPL
simulation.WSim sends the proper data stream for the 3290. Since WSim considers
each logical terminal in a 3290 set as a separate LU, you can code from one to four
LU statements to represent a single 3290.

You must associate the LU statements in your 3290 definition as a set by following
resource limits for the real 3290. As far as the host is concerned, no relationship
exists between the logical terminals. If operator interaction between the screens is
important to the simulation, use EVENT statements and logic tests in your
message generation decks to simulate the interaction.

Operands required for 3290 simulation
The following list is a list of the operands and values you must code on theLU
statement to simulate the 3290:
v LUTYPE=LU2

LU2 means that the 3290 is an SNA LU Type 2 device.
v COLOR=ORANGE

The 3290 accepts and transmits the color attribute even though it is only able to
display in orange.

v UOM=MM
The unit of measure for screen sizes is millimeters. 1 millimeter is equivalent to
one picture element (PEL). For other 3270 devices, size is represented in inches
(cells).

v FLDVALID=NO
The 3290 does not support field validation.

v MAXNOPTN=(0, 8, or 16)
The maximum number of partitions for the logical terminal set is 16. Since 0, 8,
and 16 are the only values allowed, a terminal set can have at most one logical
terminal with 16 partitions or 2 with 8 partitions each.

v EXTFUN, HIGHLITE, ALTCSET, PS
The number of PS sets allowed for the 3290 is six. Specify only single-plane
character sets. Only one logical terminal in the set can have PS support. You can
select EXTFUN, HIGHLITE, and ALTCSET as with any 3270 device.

v UASIZE, CCSIZE, and DISPLAY
Use UASIZE=(w,h) and CCSIZE=(0,0) for variable cell sizes.
Use CCSIZE=(x,y) for fixed character cell size.
Use DISPLAY=(r,c).

The following section explains how to determine values for UASIZE, CCSIZE, and
DISPLAY.

Logical terminal screen definition
To define the logical terminal screens that are displayed on the 3290 physical
screen, you must select values for the UASIZE, DISPLAY, and CCSIZE operands
that ensure the screens fit on the 3290 physical screen.

66 Creating Workload Simulator Scripts

Determining screen size (UASIZE) from the screen split
To ensure that the screens for the logical terminals fit on the 3290 physical screen,
you must first select the screen split you wish to simulate. Once you have selected
a screen split, use the following guidelines to determine UASIZE:
v Full Screen—UASIZE=(960,751)

960 PELS
┌───────────────────────┐
│ │
│ │
│ │

751 PELS │ │
│ │
│ │
│ │
!───────────────────────┘

v Vertical Half Screen—UASIZE=(480,751)
480 PELS

┌───────────┬───────────┐
│ │ │
│ │ │
│ │ │

751 PELS │ │ │
│ │ │
│ │ │
│ │ │
!───────────┴───────────┘

v Horizontal Half Screen—UASIZE=(960,375)
960 PELS

┌───────────────────────┐
│ │

375 PELS │ │
│ │
├───────────────────────┤
│ │
│ │
│ │
!───────────────────────┘

v Quarter Screen—UASIZE=(480,375)
480 PELS

┌───────────┬───────────┐
│ │ │

375 PELS │ │ │
│ │ │
├───────────┼───────────┤
│ │ │
│ │ │
│ │ │
!───────────┴───────────┘

Determining character cell size (CCSIZE) and display size
(DISPLAY)
Use Table 6 on page 68 and Table 7 on page 68 and the following guidelines to
determine the CCSIZE and DISPLAY values for the logical terminal. Examples
follow the tables.
v If the character cell size is variable (CCSIZE=(0,0)) or you know the display size

only, use the number of rows and columns for the specific type of physical
screen to determine the cell size from the tables.

v If the character cell size is fixed (CCSIZE=(x,y)), use the dimensions of the cell
and the type of physical screen (full, vertical half, horizontal half, or quarter) to
determine the number of rows and columns from the tables.

Chapter 7. Simulating specific devices 67

Table 6. Table to determine rows on screen or height of character cell

Height of
Character
Cell

Number of Rows for
Full Screen or
Vertical Half Screen

Number of Rows for
Horizontal Half Screen
or Quarter Screen

31 24 12

30 25 12

29 25 12

28 26 13

27 27 13

26 28 14

25 29-30 15

24 31 15

23 32 16

22 33-34 17

21 35 17

20 36-37 18

19 38-39 19

18 40-41 20

17 42-44 21-22

16 45-46 23

15 47-50 24-25

14 51-53 26

13 54-57 27-28

12 58-62 29-31

Table 7. Table to determine columns on screen or width of character cell

Width of
Character
Cell

Number of Columns for
Full Screen or
Horizontal Half Screen

Number of Columns for
Vertical Half Screen
or Quarter Screen

12 80 40

11 81-87 41-43

10 88-96 44-48

9 97-106 49-53

8 107-120 54-60

7 121-137 61-68

6 138-160 69-80

The following four examples demonstrate how you can use these tables to
determine the CCSIZE and DISPLAY values.

Example 1: CCSIZE=(8,12) displayed on a horizontal half screen.
1. Find where height=12 and number of rows for horizontal half screen intersect

in Table 6.
2. Pick a number of rows from the range listed (29-31).

68 Creating Workload Simulator Scripts

3. Find where width=8 and number of columns for horizontal half screen intersect
in Table 7 on page 68.

4. Pick a number of columns from the range listed (107-120).

A valid definition for this example is CCSIZE=(8,12), DISPLAY=(31,120). You can
omit UASIZE when the cell size is fixed.

Example 2: DISPLAY=(24,80) displayed on a quarter screen with fixed CCSIZE.
1. Find where number of rows=24 falls within the range listed under quarter

screen in Table 6 on page 68. In this case, it is where the cell height is 15.
2. Find where number of columns=80 falls within the range listed under quarter

screen in Table 7 on page 68. In this case, it is where the cell width is 6.

A valid definition for this example is DISPLAY=(24,80), CCSIZE=(6,15). You can
omit UASIZE when the cell size is fixed.

Example 3: DISPLAY=(24,80) displayed on a quarter screen with variable CCSIZE.
1. Verify that number of rows=24 falls within the range listed under quarter

screen in Table 6 on page 68. From the table, 12-31 rows are valid for a quarter
screen.

2. Verify that number of columns=80 falls within the range listed under quarter
screen in Table 7 on page 68. From the table, 40-80 columns are valid for a
quarter screen.

A valid definition for this example is DISPLAY=(24,80), CCSIZE=(0,0),
UASIZE=(480,375).

Example 4: DISPLAY=(31,160) displayed on a vertical half screen with variable
CCSIZE.
1. Verify that number of rows=31 falls within the range listed under vertical half

screen in Table 6 on page 68. From the table, 24-62 rows are valid for a vertical
half screen.

2. Verify that number of columns=160 falls within the range listed under vertical
half screen in Table 7 on page 68. From the table, only 40-80 columns are valid
for a vertical half screen. Therefore, this DISPLAY size cannot work.

Simulating 3270 DBCS devices
To simulate IBM 3270 DBCS devices, such as an IBM PS/55 executing an IBM 3270
DBCS emulation program or an IBM InfoWindow 7672-JC1 3270 DBCS display,
code DBCS=YES and FLDOUTLN=YES. These operands enable the DBCS and
Field Outlining support.

When DBCS=YES is coded, WSim accepts 3270 data streams with DBCS data to be
displayed. The 3270 Query reply, sent in response to the 3270 Query request
received from the host application program, indicates support of DBCS-Asia and
also indicate support of a DBCS character set. The message generation process
accepts DBCS data from the script and update the simulated screen image
accordingly.

Note: See Part 2, “Introducing message generation decks,” on page 93 for message
generation considerations.

When FLDOUTLN=YES is coded, WSim accepts 3270 data streams with Field
Outlining extended attributes. The 3270 Query reply also indicates support of Field
Outlining.

Chapter 7. Simulating specific devices 69

Note: In WSim, field outlining might be supported without supporting DBCS.
However, field outlining is normally only associated with DBCS 3270 emulation.

IBM 5250 Display System
WSim simulates an IBM 5250 display terminal as a logical unit Type 7 (device type
LU7) and an IBM 5250 printer as a logical unit Type 4 (device type LU4).WSim
maintains a screen image buffer and a format table for each terminal as supported
by the 5251 controller. The buffer can be modified by messages generated by WSim
and by commands and orders received from the system under test. The format
table can be modified only by commands and orders received from the system
under test.

The format table consists of header information that is supplied by the start of
header (SOH) order, and one entry for each field defined in the screen image
buffer. Each entry in the format table consists of at least a starting and ending
address that defines the field limits on the screen image and a field format word
(FFW) that contains information pertinent to that field. Such information might be
the type of field, the modified data tag bit, and various field specifications that
govern how that field is to be processed.

Data generated by WSim is placed into a terminal buffer under control of a Read
command that must be received from the system under test before message
generation can be entered.WSim automatically breaks the transmitted data into RU
chain elements.

When Read commands for a terminal are received in the data stream, they are
placed in a queue. When a poll is received and all conditions for entering message
generation are met, a message is generated into the terminal buffer under control
of the FFW for the field being written into.

A terminal is placed in Normal Lock State when a message is generated or when
certain commands are received. It is placed in Normal Unlock State when its
message delay expires or when a Read command is received with the unlock
keyboard bit set to B'1'.

Logic testing
You can use the IF statements to perform logic tests for 5250 terminals on the
screen image buffer data or the incoming or outgoing data stream.

You can specify a logic test on the screen image buffer for the terminal by coding
the B+, B-, C+, C-, or (row,col) location options on an IF statement. This type of
logic test operates on the data as it would be displayed at a real terminal. All logic
tests on a screen image buffer are performed after the buffer has been modified
according to the message generated or received. If a received message contains
invalid commands or orders, the data received before the invalid command or
order is processed and can modify the screen image buffer, but no data following
the invalid command or order is processed.

You can specify a logic test on an incoming or outgoing data stream, including
headers, commands, and orders, by coding the D+, TH+, RH+, or RU+ location
option on an IF statement. See WSim Script Guide and Reference for information
about how to do this in STL.

70 Creating Workload Simulator Scripts

Formatting the screen image buffer and format table
The maintained 5250 screen image buffer and format table can be written to the
log data set and later formatted by the Loglist Utility into screen images as the
5250 display operator would see them. See the WSim Script Guide and Reference for
information about using the LOGDSPLY operand to write the data to the log data
set. See WSim Utilities Guide for information about using the Loglist Utility.

Chapter 7. Simulating specific devices 71

72 Creating Workload Simulator Scripts

Chapter 8. Coding network options

This chapter discusses some of the optional statements and operands you can code
after the NTWRK statement when you define your simulated network. You can use
these statements and operands to control many of the features of your simulated
network such as the time frame used for starting devices in the network, the order
in which message generation decks or STL procedures are used, and the method of
logging messages sent and received by WSim.

The statements and operands discussed in this chapter are the ones you use most
frequently. This chapter provides a brief introduction to these options and indicates
how you code them. For complete explanations of other options you can code on
the NTWRK statement and the syntax of the statements and operands presented in
this chapter, refer to WSim Script Guide and Reference.

This chapter discusses the following network options:
v Counters and STL integer variables
v Future events and start time
v Message generation delays and transmit interrupts
v Message logging
v Network logic tests
v Online response-time statistics
v Paths for message generation decks and STL programs
v Random number generation
v Terminal scanning and automatic terminal recovery
v Tracing of messages and Structured Translator Language (STL) programs
v User data tables
v User exit routines.

Counters and STL integer variables
WSim provides two types of counters: sequence and index. A sequence counter is
incremented before its value is inserted into a data field. An index counter is used
to select an entry from a user table. Its value might be incremented depending on
how you reference the counter. STL supports index counters only, which in STL are
called integer variables.

Sequence and index counters can be used to generate data that is inserted directly
into messages generated by WSim or to reference entries in user tables. You can
also use counters to specify cursor locations for simulated display devices and to
specify variable offsets in data buffers and save areas.

The value of a sequence or index counter automatically wraps to 0 after reaching
2 147 483 647. However, for a sequence counter, 0 is never inserted into a message
because the value is updated to 1 when the counter is referenced.

Sequence counters
WSim maintains a sequence counter for each network, VTAM application, CPI-C
transaction program, and TCP/IP connection, device, and logical unit. The

© Copyright IBM Corp. 1989, 2015 73

counters are called NSEQ, LSEQ, TSEQ, and DSEQ, where the first letter stands for
network, line, terminal, and device, respectively. While VTAM applications, CPI-C
transaction programs, and TCP/IP connections do not have lines or terminals
associated with them, each has a line sequence counter (LSEQ) and a terminal
sequence counter (TSEQ). Each LU defined for a VTAM application, transaction
program defined for an APPC LU, or device defined for a TCP/IP connection has
an associated device sequence counter.

Index counters
WSim maintains from 3 to 4095 index counters or STL integer variables for each
network, line, VTAM application, CPI-C transaction program, and TCP/IP
connection, device, and logical unit. The counters are called NCn, LCn, TCn, and
DCn, where the first letter stands for network, line, terminal, and device,
respectively, and n refers to the number of the specific counter. In STL, the variable
names can be any valid STL variable name; see WSim Script Guide and Reference for
more information. STL shared integer variables reference NCn counters and
unshared integer variables reference DCn counters. While VTAM applications,
CPI-C transaction programs, and TCP/IP connections do not have lines or
terminals associated with them, each can have from 3 to 4095 line index counters
(LCn) and from 3 to 4095 terminal index counters (TCn). Each LU defined for a
VTAM application, transaction program defined for an APPC LU, or device
defined for a TCP/IP connection can have from 3 to 4095 device index counters
(DCn).

The CNTRS operand on the NTWRK statement determines the number of index
counters that WSim maintains for each resource. If you specify any user exits,
WSim allocates either the number of index counters or STL integer variables
specified on the CNTRS operand or the number of counters referenced in the
network, whichever is greater. If you do not specify any user exits, WSim allocates
as many index counters as are needed and ignores the CNTRS operand. WSim
allocates a minimum of three index counters.

You need to code the CNTRS operand only if you use a user exit that depends on
the number of counters allocated.

Allocation of counters for resources
Table 8 illustrates the counters that are allocated for each simulated resource.

Table 8. How counters are allocated for resources

Simulation
Type

LSEQ
LC1 - LCn

TSEQ
TC1 - TCn

DSEQ
DC1 - DCn

CPI-C TP

APPCLU

TP

X

XNote 1 XNote 2

VTAM Application

VTAMAPPL

LU

X X

X

TCP/IP Connection

TCPIP

DEV

X X

X

74 Creating Workload Simulator Scripts

Table 8. How counters are allocated for resources (continued)

Simulation
Type

LSEQ
LC1 - LCn

TSEQ
TC1 - TCn

DSEQ
DC1 - DCn

Notes:

1. This set of counters is available to all instances of a given CPI-C transaction program.

2. This set of counters is unique for each CPI-C transaction program instance.

Altering the values of counters and STL integer variables
Counters:

You can alter the values of sequence and index counters by using the SET
statement in a message generation deck. You can use the SET statement to set a
counter to any of the following values:
v An integer
v A random number
v The value of another counter
v The result of addition, subtraction, multiplication, division, or remainder

division between the counter and a constant or between the counter and another
counter

v 1 to 4 bytes of hexadecimal data in a save area
v The EBCDIC character representation of a number in data
v The simulated cursor's position
v The offset within a save area, user area, buffer, or data stream where matching

text is found as the result of a logic test.

See Part 2, “Introducing message generation decks,” on page 93 for information
about how to use the SET statement to alter the values of counters and how to
reference counters in message generation statements.

STL integer variables:

You can alter the value of STL integer variables by using an STL assignment
statement. See WSim Script Guide and Reference for information about using
assignment statements.

Future events and start time
The Future Event (FE) network definition statement and the Start Time (STIME)
operand provide two ways of automatically controlling network simulations. These
definitions apply to overall network control rather than individual terminal
control.

Use the Future Event (FE) statement to specify an operator command that is
automatically executed during the simulation run under the following conditions:
1. When a timer expires
2. When an event is signaled.

For example, the following statement causes a user time interval (UTI) to be set
automatically to 0 at 1 minute 30 seconds into the run.
FE TIME=90,

COMMAND=(A NTWRK,U=0)

Chapter 8. Coding network options 75

Multiple FE statements can be coded within one network definition.

Use the STIME operand on the NTWRK statement to stagger the start delay for
each VTAMAPPL, APPCLU, or TCPIP in the network. For example, the following
operand value starts the VTAMAPPLs, APPCLUs, and TCPIPs (in the order coded
in the network definition) one at a time at 60-second intervals following the S
(Start) operator command.
STIME=60

Refer to WSim Script Guide and Reference for more information about coding future
events and start time.

Message generation delays and transmit interrupts
WSim provides several options for controlling the delays a simulated terminal uses
between the messages it sends. You can use these options by specifying the
statements and operands described below. Refer to WSim Script Guide and Reference
for specific syntax information for these statements and operands.

In STL, this delay is referred to as the transmit interrupt. For more information
about transmit interrupts when using STL, refer to WSim Script Guide and Reference.

UTI statement
Use the UTI statement in your network definition to define user time intervals for
computing the message delays. Code UTI values in hundredths of seconds. You
can code any number of UTIs to allow devices to operate at different speeds within
the same network. WSim uses the UTI values that you code as scale factors by
which user-specified delay values are multiplied.

The UTI statement includes a label and a UTI value as shown in the following
examples:
UTI1 UTI 100
UTI2 UTI 0

Note that if you specify UTI with a value of 0, there is no delay between messages
generated and sent by WSim when using this UTI.

You can reference a UTI on a DEV, LU, or TP statement by using the IUTI operand
as shown in the following example:
DEV2 DEV IUTI=UTI1

The IUTI operand specifies the individual UTI (UTI1) that is to be used in
calculating all delays for this device. It must reference a UTI statement that is
defined within the network definition.

You can also reference UTIs from message generation decks and alter UTIs using
operator commands. Refer to Part 2, “Introducing message generation decks,” on
page 93 and WSim User's Guide for more information about referencing and
altering UTIs. Refer to WSim Script Guide and Reference for more information about
the UTI statements and operands.

The following example shows a network definition and message generation deck
that uses multiple UTIs.

76 Creating Workload Simulator Scripts

SAMPLE1 NTWRK UTI=100...
UTIA UTI 0
UTIB UTI 1000
UTI1 UTI 1
UTI2 UTI 2...

VTAMAPPL IUTI=UTIB
LU1 LU
LU2 LU IUTI=UTI1

VTAMAPPL
LU3 LU
ONE MSGTXT

SETUTI UTI=UTI2...
ENDTXT

TWO MSGTXT
DELAY TIME=F1,UTI=UTIB...
ENDTXT

The UTI for LU1 is UTIB. The UTI for LU2 is UTI1. And the UTI for LU3 is the
network UTI. SETUTI alters the UTI value only for the device that is executing
deck ONE. The network UTI is not altered. The DELAY message generation
statement specifies an intermessage delay. The values specified by the TIME and
UTI operands are multiplied together to obtain the value for DELAY.

The following example shows how to code the message generation decks shown in
the above example using STL. For information about STL, see WSim Script Guide
and Reference.
one: msgtxt

uti ’UTI2’

...
endtxt

two: msgtxt
uti ’UTIB’
delay(1,’UTIB’)

...
endtxt

UTI adjustment
WSim can adjust UTI values according to an expected message transfer rate that
you specify for messages transmitted from WSim. You can specify this expected
message transfer rate in your network definition. WSim automatically adjusts the
UTIs at specified intervals to maintain the rate. By lowering UTIs and increasing
rates of traffic from other simulated terminals, WSim can compensate for lines
dropping out due to hardware or software problems.

WSim adjusts each UTI by taking the ratio of the observed rate for the previous
interval to the expected rate for the entire network and multiplying all UTIs by
this ratio. The limit of change for each calculation is 25 percent of the current value
of the UTI.

Specify the expected message transfer rate and the interval at which adjustments
take place on the EMTRATE operand of the NTWRK statement. You can also use

Chapter 8. Coding network options 77

the A (Alter) operator command to specify or alter the rate after the traffic rate is
established. See WSim User's Guide for information about using this operator
command.

For adjustments to work effectively, UTI values must be large enough to allow
adjustment either upward or downward. WSim never adjusts a UTI to zero. If you
set a UTI to zero, no further adjustment takes place. In addition, no adjustment
takes place if the observed rate, the expected rate, or the adjustment interval is
zero. When you change the adjustment interval, WSim requires three intervals to
accumulate enough data to make any adjustment in the UTIs. Thereafter, each UTI
is adjusted at each interval, if required, unless no messages were transferred in the
interval just completed or in the interval preceding the one just completed.

If the expected rate is changed drastically during a run, you can obtain improved
results by first adjusting the UTIs with the A (Alter) operator command to
approximate the wanted rate. If the expected rate is low, the adjustment interval
must be relatively large in order to ensure some message traffic in successive
intervals.

The following list provides guidelines for adjusting UTIs:
v Use an adjustment interval large enough that the rate is relatively constant over

successive intervals. When adjusting UTIs, WSim converts the rate to messages
per minute. Distorted results might be obtained if the interval is too small.

v When the rate or the number of lines in a network is small, the adjustment
interval must be relatively large. As the number of lines and the expected rate
increase, you can decrease the interval.

v Do not use the A (Alter) operator command to make a drastic change in the
expected rate. Such a change can cause UTIs to be adjusted unreasonably high
with resulting long delays and the loss of most or all traffic. If you want a
drastic change in the rate, turn off the automatic adjustment feature by setting
the adjustment interval to zero and alter UTI values to approximate the rate
wanted. Then, wait for a stable rate to be established and set a new expected
rate and adjustment interval.

v Automatic UTI adjustment affects all UTIs in the network. If you have many
UTIs, this adjustment might produce unexpected results. It is best to use
automatic UTI adjustment with a few UTIs so that you can more easily control
the results.

v Keep in mind that the purpose of this feature is to maintain a steady message
rate for messages transferred from WSim, not to establish such a rate.

DELAY operand
Use the DELAY operand to define the delay between sending complete messages.
You can specify a delay value that is a fixed value, two types of random values
(uniformly distributed), or a value from a table of delays. You also specify the UTI
to which the DELAY applies. The DELAY operand applies to the terminal going
through message generation, but you can code it on higher-level statements. Refer
to Part 2, “Introducing message generation decks,” on page 93 for information
about the DELAY message generation statement that you can use to override
DELAYs set for terminals. Refer to WSim Script Guide and Reference for information
about the STL DELAY statement that you can use to override DELAYs set for
terminals.

78 Creating Workload Simulator Scripts

RATE statement
If the type of delay that you specify is a table value, for example, DELAY=T0, you
must code a RATE statement in your network definition to identify the rate table.
The rate table is a member of the partitioned data set that is defined by the
RATEDD DD statement in the WSim JCL for MVS. The integer name field on the
RATE statement is used by the BLKDLY and DELAY operands and the DELAY and
WAIT statements to reference a specific table. For more information about rate
tables and how to generate rate tables, refer to Chapter 9, “Generating rate tables,”
on page 91.

THKTIME operand
Use the THKTIME operand to specify when WSim is to start the message delay.
Use THKTIME=IMMED to specify that the delay for the next message for the
terminal is to begin immediately after the current message is completed. The delay
begins to expire even if the other conditions for entering message generation again,
such as resetting a wait condition, have not been met. Use THKTIME=UNLOCK to
specify that the delay for the next message for the terminal will not begin until the
terminal is ready to generate a message. This means that all SNA responses
arereceived, the terminal WAIT indicator is not set, and the keyboard is unlocked
for a 3270 display. A delay specified by a WAIT statement is treated as if
THKTIME=IMMED were specified.

CPI-C transaction programs always use THKTIME=IMMED, regardless of the
value specified by the THKTIME operand.

If you code THKTIME=UNLOCK for SNA devices requiring exception responses
only, there are no delays. Consider the sequence of message generation statements
in the following example.
...
TEXT (...) FIRST TEXT STATEMENT
RH EXC=ON EXCEPTION RESPONSE REQUESTED
TEXT (...) SECOND TEXT STATEMENT...

Since an exception response is requested on the first message sent in this example,
there is no delay before the second message is sent even if you specify
THKTIME=UNLOCK.

The following example shows how to code the message generation statements
shown in the previous example using STL. For information about STL, see WSim
Script Guide and Reference.
...
type ’...’ /* First text statement. */
setrh on(exc) /* Exception response requested. */
transmit
type ’...’ /* Second text statement. */...

Message logging
The message logging facility logs to a data set all data sent or received by a
simulated device in a network. You can format this data using the Loglist Utility
and use the output to debug message generation decks and network definitions.
Message logging occurs automatically for all simulated devices in the network. To
suppress message logging for all devices, code MLOG=NO on the NTWRK
statement. To suppress message logging for individual resources, code MLOG=NO

Chapter 8. Coding network options 79

on VTAMAPPL, APPCLU,or TCPIP statements. You can override the NTWRK
MLOG setting on these lower-level statements.

If you are simulating an IBM 3270 or IBM 5250, you can use the LOGDSPLY
operand on the DEV or LU statement to specify that the display and printer
buffers for the simulated device are automatically written to the log data set.

Separate log data sets for networks
Use the NTWRKLOG statement to specify a separate log data set for a network if
you want to run multiple networks independently and analyze them separately
later.

You can specify a NTWRKLOG data set where all data for the network is logged.
If you do not specify a NTWRKLOG data set, all data for that network is logged to
the general log data set. If it is not possible to associate some data with a specific
network (as with operator commands), this data is logged to the general log data
set. Operator commands, whether issued from the operator console or from an
OPCMND statement, and their responses are always written to the general log
data set.

The log record types that are written to the NTWRKLOG data sets include the
XMIT, RECV, INFO, MTRC, MRKR, DSPY, LOG, STRC, CTRC, and VRFY records.
CNSL records, which are the result of message generation deck WTO statements or
are informational messages about the state of the network, are also written to the
NTWRKLOG data set.

Include the NTWRKLOG statement in a network definition to specify that a
network log data set is used for the network. Use one NTWRKLOG statement per
network.

When using the NTWRKLOG statement, you also specify the number of buffers
used to write to the log data set by coding a value for the NCP operand. You can
specify the NCP value used in message logging in many places and on many log
data set definitions. Below shows the order of precedence used to determine the
NCP value on a specific log data set. The first value found is the one used on the
log data set.

Precedence NCP Value

1 NCP suboperand on DD statement

2 NCP operand on NTWRKLOG statement

3 NCP execution parameter

4 Default value 5

You can specify the maximum length of the data in each record of the log data set
by using the MLEN operand on the NTWRK, APPCLU, VTAMAPPL, or TCPIP
statements.

The DEBUG option
For Telnet 3270, 3270E, 5250, or NVT devices, specifying DEBUG causes WSim to
log partial data buffers and Telnet options negotiations. For CPI-C simulations, if
you specify DEBUG, WSim produces CPI-C VTAM trace data for APPCLUs.

Refer to WSim User's Guide for more information about how WSim logs data
messages.

80 Creating Workload Simulator Scripts

Inhibiting message logging to save space
WSim provides several methods that you can use to inhibit the logging of various
messages in the log data set. These methods are described in the following
sections.

Inhibiting the logging of specific messages
Normally, all Console messages (ITP001E - ITP399I) and all Log Data messages
(ITP400I - ITP499I) are written to a log data set. Console messages are identified as
CNSL records by the Loglist Utility. Log Data messages are identified as either
INFO or MTRC records.

You might want to inhibit the logging of some of these messages. To inhibit these
messages, use the INHBTMSG operand on the NTWRK statement or the MSGn=
operand of the A (Alter) operator command. In addition to inhibiting the logging
of messages, the INHBTMSG operand inhibits the display of these messages on the
console as well.

You can use the INHBTMSG operand to inhibit one or more specific messages, a
range of messages, or a class of messages as shown in the following example:
NETA NTWRK INHBTMSG=(6,124,177-179,ACT),...

The INHBTMSG operand in this example inhibits the display and logging of the
following messages:
1. Individually named messages (6, 124)
v ITP006I
v ITP124I

2. A range of messages (177-179)
v ITP177I
v ITP178I
v ITP179I

3. A class of messages (ACT)
v ITP089I
v ITP091I
v ITP092I
v ITP094I
v ITP107I
v ITP174I
v ITP175I

Because you code the INHBTMSG operand within the network definition, you
must know which messages you want to inhibit before the run. To inhibit a
message during the run, you can use the A (Alter) operator command. Information
about the A (Alter) operator command is provided in WSim User's Guide. For more
information about the INHBTMSG operand and its syntax, refer to WSim Script
Guide and Reference.

Network logic tests
This section provides a brief introduction to network logic testing. It discusses the
coding you can use to create network logic tests and some of the situations in
which you might want to use network logic tests. Refer to the WSim Script Guide
and Reference for complete descriptions of the syntax for the logic test operands.

Chapter 8. Coding network options 81

Refer to Part 2, “Introducing message generation decks,” on page 93 for
information about message generation logic tests.

You can code network logic tests after the network definition to test all messages
sent and received by a network. Network logic tests are activated when the
network is initialized and are active throughout a simulation run. They are
processed in the sequence in which you code them before any message generation
logic tests.

Network logic testing is performed with network IF statements. You can code
network IF statements in your network definition to test data received by WSim
from the system under test or sent by WSim to the system under test. You can
compare data and use the results to influence the path a device takes through
message generation decks.

Note: Network logic tests are not valid for CPI-C transaction program simulations,
and are ignored if specified.

What can be tested
Using a network logic test, you can test data from the following sources:
v Locations on a simulated screen
v Locations in the I/O buffer (the data stream)
v Counters
v Data in THs, RHs, and RUs in SNA simulations
v Locations in user areas and save areas.

For any of these data sources, you can specify an exact location for the logic test by
using the LOC or LOCTEXT operand, or you can use the SCAN operand to look
for data when you are not sure of its exact location. You can specify a starting
point using the LOC or LOCTEXT operand and code SCAN=nnnn to scan for a
specific number of characters. Or, you can code SCAN=YES to scan from the
location you specify through the end of the data in that location. You can also
specify a variable location by using the LOC or LOCTEXT operand and setting it
to the value of a sequence or index counter.

Locations on a Simulated Screen
You can examine data in the screen buffer for a device that has a simulated
screen using the LOC operand. Use LOC=B±value to specify a relative
location in the screen buffer. B+value indicates a location starting from the
upper left corner of the simulated screen. B-value indicates a location
starting from the lower right corner of the simulated screen and moving
backwards. To specify an exact location, set value to an integer 0 - 32766. To
specify a variable location, set value to the name of a counter.

Use LOC=C±value to specify a position relative to the cursor. C+value
indicates a position ahead of the cursor. C-value indicates a position behind
the cursor. To specify an exact location, set value to an integer 0 - 32766. To
specify a variable location, set value to the name of a counter.

Use LOC=(row, col) to specify an absolute position on the screen. You can
also use counters for the row and col values, for example, LOC=(DC1,DC2).

You can also use the $RECALL$ data field option to access the areas on the
TEXT or LOCTEXT operands.

Locations in the I/O Buffer (the Data Stream)
If you want to examine data for a device that has no screen buffer or one

82 Creating Workload Simulator Scripts

that uses an application such as CMS or TSO that sends data to the next
available line, you can perform a logic test on the data in the I/O buffer.
The I/O buffer contains the entire data stream sent to WSim, including all
screen formatting characters for screen devices and the TH and RH for
SNA devices. It does not include line control characters such as STX, ETX,
or EOB.

Use LOC=D+value to specify a location in the data stream. To specify an
exact location, set value to an integer 0 - 32766. To specify a variable
location, set value to the name of a counter.

You can also use the $RECALL$ data field option to access the areas on the
TEXT or LOCTEXT operands.

Counters
You can test sequence and index counters directly in network logic tests by
using LOC=value or LOCTEXT=value to specify the name of a sequence or
index counter.

Data in THs, RHs, and RUs in SNA Simulations
Use LOC=TH+value, LOC=RH+value, or LOC=RU+value to examine data in
SNA THs, RHs, and RUs. To specify an exact location, set value to an
integer 0 - 32766. To specify a variable location, set value to the name of a
counter.

You can also use the $RECALL$ data field option to access the areas on the
TEXT or LOCTEXT operands.

Locations in User Areas and Save Areas
You can compare responses returned by the system under test to data that
was sent by WSim and saved in user or save areas.

Use LOC=N±value to specify a location in a network user area. Use
LOC=Nx±value to specify a location in a network-level save area, where x
is the number of the save area. Use LOC=U±value to specify a location in a
device user area. Use LOC=s±value, where s is the number of a save area,
to specify a location in a device-level save area. To specify an exact
location, set value to an integer 0 - 32766. To specify a variable location, set
value to the name of a counter.

You can also use the AREA operand to specify a user area or save area that
contains data to be compared. Use AREA=N±value to specify a location in
the network user area. Use AREA=U±value to specify a location in the
device user area. Use AREA=s+value to specify a location in a save area,
where s is the number of the save area. Specify a length of data in a user
area or save area named by the AREA operand by using LENG=value. To
specify an exact length, set value to an integer 1 - 32000. To specify a
variable length, set value to the name of a counter.

In addition, you can code LOCTEXT=(data) when data can include recalls
of data from a user or save area.

When tests can be performed
By using the WHEN operand on the network IF statement, you can specify that
the logic test is performed on incoming data (WHEN=IN) or outgoing data
(WHEN=OUT). You can also use the TYPE operand on the network IF statement to
specify that the network logic test is performed only for specific types of devices.

Chapter 8. Coding network options 83

What comparisons can be made
You can use logic tests to compare the following types of data:
v Text in a response
v Text saved from previous responses
v Bits in the TH or RH of an SNA data stream
v User table entries.

Text in a Response
You can compare data to a string of text up to 32000 characters long. Use
TEXT=(text) or LOCTEXT=(text) to specify a text string.

Text Saved from Previous Responses
You can save text data by using the RESP operand on a TEXT statement.
You can code the response you are expecting for the TEXT statement on
the RESP operand and save this response for comparison to the response
that is received. To compare the response you receive with the response
you were expecting, use TEXT=RESP in your logic test statement.

Bits in the TH or RH of an SNA Data Stream
You can compare data to bits in the TH or RH of an SNA data stream by
coding two hexadecimal digits enclosed in quotation marks, for example
TEXT='80'.

User Table Entries
You can compare data with all entries in a user table. Use the user table
operand (UTBL) to specify the name or number of a user table. Do not use
the TEXT operand.

What actions can be taken
When you compare with a network logic test, use the THEN operand to specify an
action to be taken if the comparison is true and the ELSE operand to specify an
action to be taken if the comparison is false. You can code either operand or both.
Because network logic tests take place during message transmission and receipt
rather than message generation, you do not have to code an ELSE operand because
no action is required.

Some of the actions available for THEN and ELSE operands include branching to
(B) or calling (C) another message path, waiting (WAIT), returning (RETURN) to
message generation after the point of the last call, posting (POST) or signaling
(SIGNAL) an event, or resetting (RESET) an event. Refer to WSim Script Guide and
Reference for more information about the statements used to specify actions in
network logic tests.

Online response-time statistics
The online Response-Time Statistics feature, RSTATS, provides online response-time
calculations for simulated terminals. RSTATS measures the time it takes to enter a
command at the terminal and receive a response from the system under test.

Online response time statistics are collected for message-generating resources only,
such as DEVs and LUs.

Note: The RSTATS function is not supported for CPI-C transaction program
simulations. RSTATS cannot be specified at the APPCLU or TP level. It is ignored
for APPCLU and TP if specified at the NTWRK level.

84 Creating Workload Simulator Scripts

The RSTATS operand
To specify the response-time feature for a particular device, specify the following
codes in the network definition:
RSTATS=YES

You can code this operand on the DEV or LU statements or code it on higher-level
statements and default it down to the lower-level statements.

RSTATS=YES specifies that response statistics are accumulated and reported when
the operator issues the W (RSTATS) command for the device.

RSTATS=NO specifies that no response statistics are kept for the device.

If you specify RSTATS=NO for a device, you cannot activate RSTATS for that
device at any time during the simulation because storage for RSTATS is allocated
only at initialization time.

Refer to WSim User's Guide for information about how to operate the RSTATS
feature.

Paths for message generation decks and STL programs
Use the PATH statement and the PATH operand on the DEV or LU statements to
specify the order of message generation decks or STL procedures used by a
simulated terminal.

Note: A group of STL procedures that perform a specific task is called an STL
program.

The PATH statement specifies the sequence of message generation decks WSim
uses for each terminal. Each PATH statement names one or more message
generation decks. You can code any number of PATH statements for a network.

For each simulated device, code a PATH operand specifying the names of the
PATH statements you have defined in the order you want the terminal to use
them. For each device, you can specify any number of paths in any order.

When specifying paths for devices, use the CYCLIC=YES operand to specify that
as terminals reference a PATH statement, the first terminal selects the first PATH
entry, the second terminal selects the second PATH entry, and so on. If you do not
specify CYCLIC=YES, you can use the DIST statement to define a probability to be
used in selecting entries from a PATH statement.

You can use the FRSTTXT operand to identify a message generation deck that is
used only once at the beginning of message generation. For example, you might
want to identify a logon deck that is used once but not repeated as part of a path.

For more information about specifying paths for message generation decks, see
Part 2, “Introducing message generation decks,” on page 93. For more information
about specifying paths for STL programs and for details about the statements and
operands you can use to specify paths, see WSim Script Guide and Reference.

Chapter 8. Coding network options 85

Random number generation
WSim maintains five random number generator seed values for each active
network. These seeds are used to generate random numbers in five functional
areas as described as follows:
v CNTRSEED specifies seed values used to set a counter to a random number.
v DELYSEED specifies seed values used to calculate delays or select them from

rate tables.
v PATHSEED specifies seed values used to select message generation PATH entries

according to a distribution specified on the DIST statement.
v TEXTSEED specifies seed values used to insert random numbers in message

generation statements.
v UTBLSEED specifies seed values used to select entries from a user table.

These seeds are maintained separately for each functional area. For example, a
random number generated as data on a TEXT statement does not affect the next
PATH entry chosen based on a DIST statement. Changes in timings and the
external environment can affect which particular random numbers are generated
for a particular device, but the introduction into a network of a new functional
area that uses random numbers does not change the sequence of random numbers
generated in the other functional areas.

Specify the seed values for a network by using the five operands that are listed
previously on the NTWRK statement. For more information about these operands,
refer to WSim Script Guide and Reference.

You can generate random numbers between specific values by using the RN
statement in your network definition. The RN statement defines an interval from
which a random number is selected and inserted into a data field. You can
reference a specific RN in a message generation statement when you want a
random number to be generated with a message. In the following example, the RN
statement specifies that each of the integers 10 - 50 has an equal chance of being
selected when the RN is referenced by a message generation statement.
0 RN LOW=10,HIGH=50

For information about referencing RNs in message generation statements, refer to
Part 2, “Introducing message generation decks,” on page 93. For information about
referencing RNs in STL statements, refer toWSim Script Guide and Reference.

How WSim generates random numbers
The random numbers generated by WSim are pseudo-random numbers. The
method used to generate these numbers is based on the power residue method
discussed in the publication Random Number Generation and Testing. When a
random number is required during a simulation, WSim multiplies the current seed
value for the functional area by 16777219. The low-order 48 bits of this product
become the new seed value. This new value is used as the basis for selecting the
wanted random number out of the specified range. A binary point is assumed to
the left of the 48 bits of the value, thus giving a number between zero and one.
This fraction is multiplied by the size of the specified range, and the truncated
result is added to the lower limit of the range to produce the final random number.

86 Creating Workload Simulator Scripts

Terminal scanning and automatic terminal recovery
WSim provides terminal scan and recovery functions that enable the operator to
examine and alter the current status of terminals and devices in the network. The
scan function examines each simulated terminal and device once every minute to
determine whether they are active or inactive. A terminal or device is considered
inactive if it meets the following criteria:
v No messages were transmitted or received for the time specified as the scan

threshold (second parameter in the SCAN option).
v No interblock, intermessage, or intertransaction delay is active.
v The LOGICAL WAIT indicator is on, the terminal EVENT WAIT indicator is on,

the INPUT INHIBITED indicator is on for display devices.
v The device type is not LU3.
v The terminal or device transmitted at least one message.
v The terminal or device is not quiesced.

Code the SCAN operand on the NTWRK definition statement to specify the scan
function. Refer to WSim User's Guide for information about the operator commands
you can use with the scan function.

When WSim finds a terminal or device that is inactive, it writes a message to the
operator. Depending upon the third value coded on the SCAN operand, it might
attempt to recover the terminal automatically. How that recovery proceeds is based
on what you code on the ATRABORT operand for that terminal or device. Code
ATRABORT=DECK to specify that the current message generation deck is to be
aborted. Code ATRABORT=PATH to specify that the current path is to be aborted.
Code ATRABORT=NONE to specify that the current message generation deck is
not to be aborted. You can use the ATRDECK operand to specify a recovery
message generation deck that is used before normal message generation is
resumed.

Refer to WSim User's Guide for more information about controlling automatic
terminal recovery. Refer to WSim Script Guide and Reference for details about coding
the ATRABORT and ATRDECK operands.

Tracing messages and Structured Translator Language (STL) programs
This section describes message tracing and STL tracing. With message tracing, you
can trace the message generation process during a test. With STL tracing, you can
trace the execution of an STL program that WSim uses to generate messages
during a test.

Message tracing
With the message trace feature, you can trace the message generation process by
providing a printed listing of the steps that WSim follows through the message
generation decks. To specify message tracing, code MSGTRACE=YES on the
NTWRK, VTAMAPPL, APPCLU, TCPIP, DEV, LU, or TP statement. You can format
the output using the Loglist Utility. For information about using the message trace
feature to test and debug message generation decks, refer to Part 2, “Introducing
message generation decks,” on page 93. For information about using the Loglist
Utility to format message trace output, refer to WSim Utilities Guide.

Chapter 8. Coding network options 87

Structured Translator Language program tracing
WSim provides an STL trace facility with which you can trace the execution of an
STL program. STL is a structured language that you can use to create message
traffic for devices simulated by WSim. STL statements are translated into message
generation statements by the STL Translator. These statements form message
generation decks that WSim uses to generate messages.

To specify the logging of STL trace records, code STLTRACE=YES on the NTWRK,
VTAMAPPL, APPCLU, TCPIP, DEV, LU, or TP statement. The following example is
an example of a LU statement with STL tracing specified:
LU0001 LU STLTRACE=YES,...

You can also activate STL trace using the A (Alter) operator command. See WSim
User's Guide for a description of this operator command.

Use the Loglist Utility to process the STL trace records. The Loglist Utility
produces output that correlates the STL statements with the message generation
statements produced by the STL Translator. The output also provides trace data
indicating what occurs when the statements are processed.

To enable the Loglist Utility to process the STL trace records, you must include
certain coding in your STL program or use a specific execution parameter when
running the STL Translator. Refer to WSim Script Guide and Reference for more
information about STL programs and using the Loglist Utility to process trace
records.

User data tables
Use the UTBL statement to create a table from which data can be selected and
inserted into messages, or to be referenced from FILE statements to define the
simulated file data for FTP client simulations. A single UTBL can have up to
2147483647 entries, and each entry can contain any number of characters. Define
the user tables with your network definition. You can define the user table data
entries along with the user table definition or include them as a member of the
partitioned data set that contains the message generation decks. Specify user table
entries in message generation decks by using the MSGUTBL statement. The
following example shows sample definitions of UTBLs and MSGUTBLs.

* UTBL definitions. *

0 UTBL (0’F3’124),(04128),(34591), PART NUMBERS

(95735),(39782),(89678)
1 UTBL (GIZMO),(SCREW),(NAIL),(WIDGET),

(DOODAD),(STAPLE) DESCRIPTIONS
2 UTBL CATS MEMBER CATS
3 UTBL DOGS MEMBER DOGS

...

* MSGUTBL definitions. *

CATS MSGUTBL (DOMESTIC SHORT HAIR),(PUMA),(PANTHER)
DOGS MSGUTBL (MUTT),(GREYHOUND),(SPITZ)

You can use the UDIST statement to define a probability distribution that WSim
uses to select entries from a UTBL statement. The values you specify on a UDIST
statement assign relative weights to the corresponding entries on the UTBL

88 Creating Workload Simulator Scripts

statement. Each weight is a proportion of the total of the weights on the statement.
In other words, WSim divides each weight value by the total of the weights to
obtain fractional values for each corresponding UTBL entry. One of these fractional
values represents the probability that a particular UTBL entry will be chosen on
any given selection.

For logic testing, you can reference a user table by number on an IF statement by
using the UTBL operand.

Refer to Part 2, “Introducing message generation decks,” on page 93 for
information about referencing user tables and specifying user table data and
distributions in message generation decks. Refer to WSim Script Guide and Reference
for information about referencing user tables and specifying user table data and
distributions in STL programs.

User exit routines
You can write user exit routines to perform additional processing of data and
manipulation of network resources. When you specify an exit routine, that routine
gains control when certain types of information are sent or received by WSim. You
can use the following operands to indicate specific types of exit routines:
v Use the INEXIT operand on the NTWRK statement to specify a message input

exit routine.
v Use the OUTEXIT operand on the NTWRK statement to specify a message

output exit routine.
v Use the NCTLEXIT operand on the NTWRK statement to specify a network

initialization, cancellation, or reset user exit routine.
v Use the UCMDEXIT operand on the NTWRK statement to specify an operator

command user exit routine.
v Use the NETEXIT operand on the NTWRK statement to specify a network-level

exit routine. You can also use the NETEXIT operand to specify a default exit
routine for the INEXIT, OUTEXIT, NCTLEXIT, and UCMDEXIT operands.

v Use the INFOEXIT operand on the NTWRK statement to specify an
informational message exit routine.

v Use the UXOCEXIT operand on the NTWRK statement to specify a user exit
routine for an operator command issued by way of the user exit interface
routine from another user exit routine.

v Use the EXIT message generation statement to specify a message generation exit
routine.

Note:

1. For CPI-C transaction program simulations, only the message generation exit is
available for use.

Refer to WSim User Exits for information about how to use the different types of
user exit routines.

Chapter 8. Coding network options 89

90 Creating Workload Simulator Scripts

Chapter 9. Generating rate tables

Rate tables are used by WSim to calculate terminal delays. Rate tables are placed in
a partitioned data set that can be referenced by RATE statements in a network
definition. This partitioned data set is defined by the RATEDD DD statement in
the JCL or EXEC used to run WSim.

The entries in the partitioned data set each have 1000 two-byte binary numbers
that are accessed randomly, multiplied by the UTI value for the active device, and
divided by 100 to determine the length of the delay for a terminal in hundredths
of seconds. The sampling of entries from one of these tables produces terminal
delays that are distributed according to the mean value specified for the table.

WSim provides several pregenerated rate tables. The installation JCL procedure
creates the RATEDD data set and copies the supplied tables into it. For each
supplied table, the member name is the letter R followed by 2 digits giving the
mean of the distribution that the table represents. Thus, table R30 is an exponential
distribution with a mean of 30 seconds when UTI=100. The tables that are supplied
by WSim are: R10, R25, R30, R50, and R99.

If one of these tables does not meet your requirements, you can generate your own
rate tables by defining the tables, putting them in a data set, and using the
FORTRAN program, ITPRATEG, supplied in the WSIM.SITPSAMP file on the
distribution tape to generate the tables. This appendix explains how to use this
program to generate your own rate tables.

Creating input statements
ITPRATEG contains input data statements that specify a name and define the
distribution and mean value for each rate table. The format of the input data
statements is shown as follow.

Statement Columns Field Contents

1-5 Upper limit of the sample distribution in hundredths of seconds
(minimum 0, maximum 65535)

7-10 Population mean in hundredths of seconds (minimum 1000,
maximum 9999)

12-19 Member name for the generated table (1 to 8 characters)

If you specify an upper limit of zero for the sample distribution, 655.35 seconds is
assumed. An upper limit of 655.35 seconds is sufficient to allow consideration of at
least 99 percent of an exponential distribution with a mean value of 99.99.

If you specify a population mean less than 1000, 10.0 seconds is assumed. The 1000
values in a table are always in the range from 0.01 to the upper limit value and
they are generated from an exponential population with the mean that you specify.
Specifying a small upper limit can produce a table whose 1000 entries produce a
sample average lower than the population mean.

© Copyright IBM Corp. 1989, 2015 91

Generating the rate tables
To use ITPRATEG to generate rate tables, compile the FORTRAN source statements
and link-edit the resulting object file with the ITPRATEW module (in the WSim
object module library). The sample job shown in the following example creates a
rate table generator load module and stores it in the WSim load module library
under the name ITPRATET.
//RATE JOB
//STEP1 EXEC FORTGCL
//FORT.SYSIN DD DSN=WSIM.SITPSAMP(ITPRATEG),DISP=OLD,
// UNIT=3380,VOL=SER=WSIMPK
//LKED.SYSLMOD DD DSN=WSIM.SITPLOAD,DISP=OLD,UNIT=3380,
// VOL=SER=WSIMPK
//LKED.WSIMLIB DD DSN=WSIM.OBJCPU,DISP=OLD,UNIT=3380,
// VOL=SER=WSIMPK
//LKED.SYSIN DD *
INCLUDE WSIMLIB(ITPRATEW)
NAME ITPRATET(R)
/*
//

The sample job shown in the following example creates a data set of rate tables
with means of 10, 25, 30, 50, and 99, respectively.
//RATETAB JOB MSGLEVEL=1
//STEP1 EXEC PGM=ITPRATET
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//RATEDD DD DSN=RATE.TABLES,DISP=(NEW,KEEP),UNIT=3380,
// VOL=SER=WSIMPK,SPACE=(TRK,(5,5,5))
//FT06F001 DD SYSOUT=A
//FT05F001 DD *

0 1000 R10
0 2500 R25
0 3000 R30
0 5000 R50
0 9900 R99

/*

The rate table generator module is then invoked to create the rate tables. Below
describes the JCL and EXEC statements shown in the above examples.

Statement Function

RATETAB JOB Initiates the job

STEP1 EXEC Specifies the name of the rate table generator

STEPLIB DD Defines the WSim load module library

RATEDD DD Defines the data set that will contain the new rate tables

FT06F001 DD Specifies printer output of the rate tables

FT05F001 DD Defines the input data statement data set

Figure 18 on page 93 shows the output produced when ITPRATEG processes the
data input statement for the first rate table defined in the example.

92 Creating Workload Simulator Scripts

Part 2. Introducing message generation decks

WSIM RATE TABLE R10
POPULATION MEAN = 10.00 REQUESTED UPPER LIMIT = 655.35 SAMPLE MEAN = 10.07
LOW VALUE = 0.01 HIGH VALUE = 113.13 VARIANCE = 107.6145 STANDARD DEVIATION = 10.3737

--
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.33 0.34 0.35 0.36 0.37 0.38 0.39
0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.56 0.57 0.58 0.59
0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.73 0.74 0.75 0.76 0.77 0.78 0.79
0.80 0.81 0.82 0.83 0.84 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.97 0.98 0.99 1.00
1.01 1.02 1.03 1.04 1.05 1.06 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.17 1.18 1.19 1.20 1.21
1.22 1.23 1.24 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.42 1.43
1.44 1.45 1.46 1.47 1.48 1.50 1.51 1.52 1.53 1.54 1.55 1.57 1.58 1.59 1.60 1.61 1.63 1.64 1.65
1.66 1.67 1.68 1.70 1.71 1.72 1.73 1.74 1.76 1.77 1.78 1.79 1.80 1.82 1.83 1.84 1.85 1.86 1.88
1.89 1.90 1.91 1.92 1.94 1.95 1.96 1.97 1.98 2.00 2.01 2.02 2.03 2.05 2.06 2.07 2.08 2.09 2.11
2.12 2.13 2.14 2.16 2.17 2.18 2.19 2.21 2.22 2.23 2.24 2.26 2.27 2.28 2.29 2.31 2.32 2.33 2.34
2.36 2.37 2.38 2.40 2.41 2.42 2.43 2.45 2.46 2.47 2.48 2.50 2.51 2.52 2.54 2.55 2.56 2.57 2.59
2.60 2.61 2.63 2.64 2.65 2.67 2.68 2.69 2.70 2.72 2.73 2.74 2.76 2.77 2.78 2.80 2.81 2.82 2.84
2.85 2.86 2.88 2.89 2.90 2.92 2.93 2.94 2.96 2.97 2.98 3.00 3.01 3.02 3.04 3.05 3.07 3.08 3.09
3.11 3.12 3.13 3.15 3.16 3.17 3.19 3.20 3.22 3.23 3.24 3.26 3.27 3.28 3.30 3.31 3.33 3.34 3.35
3.37 3.38 3.40 3.41 3.42 3.44 3.45 3.47 3.48 3.50 3.51 3.52 3.54 3.55 3.57 3.58 3.60 3.61 3.62
3.64 3.65 3.67 3.68 3.70 3.71 3.73 3.74 3.75 3.77 3.78 3.80 3.81 3.83 3.84 3.86 3.87 3.89 3.90
3.92 3.93 3.95 3.96 3.97 3.99 4.00 4.02 4.03 4.05 4.06 4.08 4.09 4.11 4.12 4.14 4.16 4.17 4.19
4.20 4.22 4.23 4.25 4.26 4.28 4.29 4.31 4.32 4.34 4.35 4.37 4.38 4.40 4.42 4.43 4.45 4.46 4.48
4.49 4.51 4.53 4.54 4.56 4.57 4.59 4.60 4.62 4.64 4.65 4.67 4.68 4.70 4.72 4.73 4.75 4.76 4.78
4.80 4.81 4.83 4.85 4.86 4.88 4.89 4.91 4.93 4.94 4.96 4.98 4.99 5.01 5.03 5.04 5.06 5.07 5.09
5.11 5.12 5.14 5.16 5.18 5.19 5.21 5.23 5.24 5.26 5.28 5.29 5.31 5.33 5.34 5.36 5.38 5.40 5.41
5.43 5.45 5.46 5.48 5.50 5.52 5.53 5.55 5.57 5.59 5.60 5.62 5.64 5.66 5.67 5.69 5.71 5.73 5.74
5.76 5.78 5.80 5.82 5.83 5.85 5.87 5.89 5.91 5.92 5.94 5.96 5.98 6.00 6.01 6.03 6.05 6.07 6.09
6.11 6.12 6.14 6.16 6.18 6.20 6.22 6.24 6.25 6.27 6.29 6.31 6.33 6.35 6.37 6.39 6.41 6.42 6.44
6.46 6.48 6.50 6.52 6.54 6.56 6.58 6.60 6.62 6.64 6.66 6.67 6.69 6.71 6.73 6.75 6.77 6.79 6.81
6.83 6.85 6.87 6.89 6.91 6.93 6.95 6.97 6.99 7.01 7.03 7.05 7.07 7.09 7.11 7.13 7.15 7.17 7.19
7.22 7.24 7.26 7.28 7.30 7.32 7.34 7.36 7.38 7.40 7.42 7.44 7.47 7.49 7.51 7.53 7.55 7.57 7.59
7.61 7.64 7.66 7.68 7.70 7.72 7.74 7.77 7.79 7.81 7.83 7.85 7.87 7.90 7.92 7.94 7.96 7.98 8.01
8.03 8.05 8.07 8.10 8.12 8.14 8.16 8.19 8.21 8.23 8.26 8.28 8.30 8.32 8.35 8.37 8.39 8.42 8.44
8.46 8.49 8.51 8.53 8.56 8.58 8.60 8.63 8.65 8.67 8.70 8.72 8.75 8.77 8.79 8.82 8.84 8.87 8.89
8.92 8.94 8.96 8.99 9.01 9.04 9.06 9.09 9.11 9.14 9.16 9.19 9.21 9.24 9.26 9.29 9.31 9.34 9.36
9.39 9.42 9.44 9.47 9.49 9.52 9.54 9.57 9.60 9.62 9.65 9.68 9.70 9.73 9.75 9.78 9.81 9.83 9.86
9.89 9.92 9.94 9.97 10.00 10.02 10.05 10.08 10.11 10.13 10.16 10.19 10.22 10.24 10.27 10.30 10.33 10.36 10.38
10.41 10.44 10.47 10.50 10.53 10.56 10.58 10.61 10.64 10.67 10.70 10.73 10.76 10.79 10.82 10.85 10.88 10.91 10.94
10.97 11.00 11.03 11.06 11.09 11.12 11.15 11.18 11.21 11.24 11.27 11.30 11.33 11.36 11.39 11.43 11.46 11.49 11.52
11.55 11.58 11.62 11.65 11.68 11.71 11.74 11.78 11.81 11.84 11.87 11.91 11.94 11.97 12.01 12.04 12.07 12.11 12.14
12.17 12.21 12.24 12.28 12.31 12.34 12.38 12.41 12.45 12.48 12.52 12.55 12.59 12.62 12.66 12.69 12.73 12.77 12.80
12.84 12.87 12.91 12.95 12.98 13.02 13.06 13.09 13.13 13.17 13.20 13.24 13.28 13.32 13.36 13.39 13.43 13.47 13.51
13.55 13.59 13.63 13.66 13.70 13.74 13.78 13.82 13.86 13.90 13.94 13.98 14.02 14.06 14.11 14.15 14.19 14.23 14.27
14.31 14.35 14.40 14.44 14.48 14.52 14.57 14.61 14.65 14.70 14.74 14.78 14.83 14.87 14.92 14.96 15.01 15.05 15.10
15.14 15.19 15.23 15.28 15.32 15.37 15.42 15.46 15.51 15.56 15.61 15.65 15.70 15.75 15.80 15.85 15.90 15.95 15.99
16.04 16.09 16.14 16.19 16.25 16.30 16.35 16.40 16.45 16.50 16.55 16.61 16.66 16.71 16.77 16.82 16.87 16.93 16.98
17.04 17.09 17.15 17.20 17.26 17.32 17.37 17.43 17.49 17.54 17.60 17.66 17.72 17.78 17.84 17.90 17.96 18.02 18.08
18.14 18.20 18.26 18.33 18.39 18.45 18.51 18.58 18.64 18.71 18.77 18.84 18.90 18.97 19.04 19.10 19.17 19.24 19.31
19.38 19.45 19.52 19.59 19.66 19.73 19.80 19.88 19.95 20.02 20.10 20.17 20.25 20.32 20.40 20.48 20.56 20.63 20.71
20.79 20.87 20.95 21.04 21.12 21.20 21.29 21.37 21.45 21.54 21.63 21.71 21.80 21.89 21.98 22.07 22.16 22.26 22.35
22.44 22.54 22.63 22.73 22.83 22.93 23.02 23.13 23.23 23.33 23.43 23.54 23.64 23.75 23.86 23.97 24.08 24.19 24.30
24.42 24.53 24.65 24.77 24.89 25.01 25.13 25.26 25.38 25.51 25.64 25.77 25.90 26.04 26.17 26.31 26.45 26.59 26.73
26.88 27.03 27.18 27.33 27.49 27.64 27.80 27.97 28.13 28.30 28.47 28.65 28.82 29.00 29.19 29.37 29.56 29.76 29.96
30.16 30.36 30.57 30.79 31.01 31.23 31.46 31.70 31.94 32.19 32.44 32.70 32.97 33.24 33.52 33.81 34.11 34.42 34.73
35.06 35.40 35.75 36.11 36.49 36.88 37.29 37.72 38.16 38.63 39.11 39.63 40.17 40.74 41.34 41.99 42.68 43.42 44.22
45.09 46.04 47.09 48.27 49.60 51.14 52.96 55.18 58.05 62.09 68.96 113.13

Figure 18. WSim rate table output

© Copyright IBM Corp. 1989, 2015 93

94 Creating Workload Simulator Scripts

Chapter 10. Getting started with message generation decks

When you simulate system resources with WSim, you must code a script. A script
consists of two parts: a network definition and message generation decks. As
discussed in Part 1, “Defining WSim networks,” on page 1, the network definition
is a set of network definition statements that define the lines, terminals, and
devices you want to simulate. Message generation decks are sets of message
generation statements that define the messages that flow from WSim to the system
under test. The system under test responds to these messages just as it would to
messages generated by actual network resources.

You can think of a message generation deck as a computer program that performs
the actions of a terminal operator or a device on your system. For example, you
can create a deck that simulates an operator entering commands at a terminal or
that randomly selects inventory part numbers and descriptions to be sent to the
system under test.

With message generation statements and their associated operands, you can control
the message generation process. For example, you can generate text with message
generation statements, and you can define logic tests, control events, and set
intermessage delays. This book provides information about the following message
generation topics:
v Planning message generation decks
v Coding message generation decks with message generation statements
v Integrating decks with the network definition
v Analyzing and debugging scripts with the Preprocessor and the postprocessors

provided by WSim.

The following sections in this chapter explain the relationship between message
generation decks and the network definition, describe how you can create a deck,
and show what a deck looks like.

How do message generation decks relate to network definitions?
The network definition defines the terminals and resources you are simulating, and
the options WSim uses for the lines, terminals, and devices that compose the
simulated system. Message generation decks define messages sent to the system
under test, control the timing of the message generation process, and define the
interaction between simulated resources. After you create message generation
decks, you code the network definition to associate each deck with one or more
simulated devices.

The network definition determines the order in whichWSim processes each deck.
Depending on the resources that you simulate, you can design a network
definition and decks that WSim always uses together, or you can design generic
decks that might be used with many different network definitions.

Creating message generation decks and coding network definitions can be an
interdependent process. When you code message generation decks, you must also
understand the network definition and the options coded for various devices. To
create an efficient and effective simulation, both parts of a script must work
together.

© Copyright IBM Corp. 1989, 2015 95

For more information about creating network definitions, see Part 1, “Defining
WSim networks,” on page 1.

How can you create message generation decks?
WSim uses message generation statements in message generation decks to simulate
message traffic. You can use one of the following three methods to create message
generation decks:
v Structured Translator Language (STL)
v Message generation statements
v Script generating utilities.

Using the Structured Translator Language (STL)
STL is a high-level, structured programming language that uses constants,
variables, expressions, and control structures as elements of its programs. The STL
Translator is a utility that translates STL programs into message generation decks.

WSim Script Guide and Reference describes how to create decks with STL. Since STL
is similar to other high-level languages, you might find it easier to use than
message generation statements.

Using message generation statements
You can create message generation decks by coding the statements described in
this book and in the WSim Script Guide and Reference. These two books describe the
syntax conventions, coding requirements, and usage for message generation
statements. You can also use message generation statements to modify decks
created by any of the three methods listed in the preceding section. If you create
decks with one of the script generating utilities, you need to understand message
generation statements to debug the decks.

Using script generating utilities
WSim provides two utilities that you can use to generate decks:
v Interactive Data Capture
v Script Generator Utility

This section provides a brief introduction to each utility. See WSim Utilities Guide
for detailed information about these utilities.

Interactive Data Capture (IDC) captures 3270 SNA data traffic between a host
VTAM application and its associated logical unit (LU). IDC then converts the
captured data to message generation decks or STL procedures.

The Script Generator Utility uses captured data traffic and network configuration
data from live runs of the tested system. You can use existing trace capture
programs or write your own to obtain the data. After you capture the data, use the
programs provided with the Script Generator Utility to format the data; then, sort
the data using any standard sort program. When the data is properly prepared, use
ITPSGEN, a utility provided with the Script Generator Utility, to convert it into
message generation decks.

The TCP/IP Trace STL Generation Utility uses data from a TCP/IP trace to
generate an STL program. The STL program replicates a client that is
communicating with a server that is running on z/OS. WSim also provides the

96 Creating Workload Simulator Scripts

111
111
111

TCP/IP Trace Utility, which can establish a TCP/IP data trace to capture the
messages that are exchanged between a client and server.

What does a message generation deck look like?
A message generation deck is a collection of message generation statements that
creates the messages WSim sends to the system under test. The following example
illustrates a simple message generation deck that simulates an operator entering a
password:
DECK1 MSGTXT
* Sample Message Generation Deck
* This coding illustrates a simple message generation deck.
*
* Specifies the beginning of a message generation
* deck named DECK1.
*
MSG1 TEXT (PW125) Defines a message named MSG1 to be sent to the
* system under test. This message simulates an
* operator entering a password, PW125.
ENTER1 ENTER Sets the ENTER AID byte.

ENDTXT Specifies the end of DECK1.

When WSim processes this deck, it generates and sends a message, that is, a
password, to the system under test.

Although this example illustrates a simple deck created with only a few message
generation statements, you can create more complicated simulations by adding
other message generation statements. As you code a deck, each message generation
statement performs a special function that contributes to the message generation
process enabling you to accurately simulate message traffic between WSim and the
system under test.

Chapter 10. Getting started with message generation decks 97

111
111

98 Creating Workload Simulator Scripts

Chapter 11. Planning for message generation

This chapter discusses topics you should consider before you create message
generation decks with message generation statements:
v Planning considerations
v Steps for developing scripts.

It also provides a checklist to guide you when you create scripts.

In general, the planning information in this chapter also applies to using STL and
the script generating utilities. For specific planning information for these methods,
however, refer to WSim Script Guide and Reference and WSim Utilities Guide.

For detailed information about all of the planning considerations that are related to
tests, see WSim User's Guide.

Planning considerations
Before you create the message generation decks for a simulation, understand the
objectives of the test. In other words, you need to know what you are trying to test
and why you are testing it. This information determines the content of the decks.
The test objectives might be stated in a test plan for your test; if they are not,
consult your system planner, or refer to WSim User's Guide for more information
about objectives for different kinds of tests.

Once you understand the objectives of your test, you can begin planning for the
message generation decks. Planning at this stage includes making sure that you:
v Understand what you are testing
v Identify any external conditions that constrain messages
v Design your message generation decks
v Determine documentation procedures
v Determine testing procedures.

The following sections discuss each of these considerations in more detail.

Understanding what you are testing
The first step in creating message generation decks is understanding what you
want WSim to simulate and how the simulated network interacts with the real
system you are testing. The test plan probably includes general information about
what you are testing; you need to supply specific details based on your knowledge
of the network and the system you are testing.

Before you can create the message generation deck for this test, however, you need
to review the test plan and your knowledge of the system to answer the following
types of questions:
v What type of network are you simulating and what are its requirements?
v What types of terminals are you simulating?
v What types of messages do you want these terminals to send to the application?
v What types of messages do you expect to receive at the simulated resources?

© Copyright IBM Corp. 1989, 2015 99

v What timing is anticipated for messages to be received? Will they arrive on a set
schedule or at unanticipated times, that is, asynchronously?

Determining the answers to these questions clarify the tasks that lie ahead. For
example, your network might have specific timing or message load requirements,
or you might want to simulate specific terminals or devices with particular
restrictions. In addition, you might want to generate the same messages for each
terminal, or you might need to have each terminal perform different tasks.

Identifying special requirements
A second step in planning for message generation is identifying what special
requirements exist for the system. This section describes several special
requirements that are commonly encountered in WSim.

When planning your message generation decks, you must ensure that you provide
the information that is needed to connect the simulated network to real products.
For example, if you are connecting to an application program, you must identify
any special message or logon requirements for the application.

You also need to consider whether there are any special requirements for running
the test. When an operator runs simulations from a console, the operator can start
and stop various terminals, alter operating parameters, log messages, and monitor
network activity, among other tasks. For details about operator capabilities, see
WSim User's Guide.

You can also incorporate operator commands into your message generation decks
so that the simulation can run independently of an operator. For example, you
want to include operator commands in your script when you have an established
test that you want to use to collect statistics continuously or when you have a long
test that you want to run during off hours.

With WSim, you can also code messages in your deck to send to the operator to
indicate test progress. Because this can be an important test-monitoring capability,
be sure to plan for these messages when designing your message generation decks.

Finally, you need to consider whether there are any special requirements for using
specific networks and devices. The type of message generation statements you use
depends on what type of terminals and network you are using. For example, some
statements are specific to display terminals and are ignored for other terminal
types.

If you are using a VTAMAPPL simulation, you must define the VTAMAPPL in
your system VTAMLST. Find out all the information that you can before you begin
to code.

For more information about coding message generation decks for specific devices,
see Chapter 18, “Generating messages for specific types of devices,” on page 219.
For detailed information about coding the network definition for specific
devices,see Part 1, “Defining WSim networks,” on page 1.

Designing message generation decks
The third step in planning for message generation is to design your message decks.
When you design a deck, consider the following questions:
v How you want to structure the decks
v The content of the messages

100 Creating Workload Simulator Scripts

v How you want to integrate the message generation decks with the network
definitions.

The following sections explain each of these considerations in more detail.

Structuring message generation decks
A message generation deck can be as complex or as simple and as long or short as
you want. The complexity and length of a deck depend on the objectives of your
test. For example, if you want several terminals to run the same transactions in the
same order, you decide to create one message generation deck that includes that
sequence of transactions. If, however, you want these terminals to execute the
transactions in a different order, you decide to create a different message
generation deck for each transaction.

When designing message generation decks, define the structure and overall
organization of all the decks before you code individual decks. Similarly, define the
structure and overall organization of an individual deck before you code
individual statements.

Determining message content
The content of the messages that WSim sends and receives depends on what you
are testing. For example, if you want WSim to simulate a 3270 terminal accessing a
banking application, typical messages sent to the application might include account
numbers, money amounts, and check numbers.

As part of designing the message generation decks, you need to determine what
the user would type to complete the transaction. This information might be actual
data such as account numbers or text strings like “HELLO. HOW ARE YOU?” The
data can also represent the type of information that is sent to the system under test
when a user presses a specific key on the keyboard, such as the Tab or Enter key.

In WSim, you can create message generation decks that generate message text, use
keyboard keys, specify intervals for sending messages, and act based on messages
received. To code message content and keyboard activity, you must be familiar
with the requirements of the application being tested and the resources being used.
For example, if you are simulating panels, you need to know field locations for the
application. If you are moving the cursor on the panel, you must know the cursor
location and the keys that are used to move the cursor.

WSim provides considerable flexibility in designing messages. For example, you
can set up a table that containsdata to simulate a database. You can then use data
from the table in messages or compare data values from the table against messages
received. Additionally, you can simulate keystrokes and cursor movements on
display terminals.WSim also maintains a screen image display buffer so that you
can test application panels.

Integrating message generation decks with network definitions
As you develop the structure of the message generation decks, you need to specify
which terminals use which decks. All terminals can use the same set of decks or
different terminals can use different decks. Message generation decks can be used
in random order or in a predefined proportion. You use the PATH statement in the
network definition to specify which decks are used for each terminal and the order
in which they are processed.

Chapter 11. Planning for message generation 101

“Selecting decks with the PATH statement” on page 248 describes how the PATH
statement affects the message generation process. For detailed information about
coding the PATH statement on the network definition, see Part 1, “Defining WSim
networks,” on page 1.

Documenting message generation decks
A fourth step in planning for message generation is deciding how you document
your message generation decks. Document your decks so that they can be
maintained and used by others. You can use the comment header at the beginning
of the message generation deck and the comment field in a message generation
statement to indicate what the deck does and the logic that it follows. For more
information about including comments in your message generation decks, see
“Coding comments and the comment field” on page 110.

In addition, you or the test planner can maintain complete documentation of a test
by keeping test plans with notations or specific descriptions about how the plan
was carried out. Plans must indicate which message generation decks were used
for particular tests and how the decks were combined with network definitions.
Ideally, you might want to keep copies of your data sets, network definitions, and
message generation decks with your test plans so that all documentation is
together in one place.

With complete, accurate, and up-to-date test documentation, you can repeat tests
easily. It also makes it easier to build upon existing network definitions and
message generation decks when you modify tests or design new ones.

Testing scripts
A final step in planning for message generation involves determining the
procedures that you will use to test the scripts. To ensure that the message
generation decks are performing as anticipated, test your decks as you develop
them.

Testing is a two-step process that involves:
1. Syntax testing
2. Function testing.

Syntax testing
To test the syntax of your message generation decks, you can use thePreprocessor.
For more information about using the Preprocessor after you complete your script,
see “Using the preprocessor” on page 257. For a complete description of how to
use the Preprocessor, see WSim Utilities Guide .

However, correct syntax does not ensure that the script functions as expected. You
also need to test whether your decks act as expected.

Function testing
To test the function of message generation decks, you compare records of actual
message traffic with the message traffic you are expecting. To do this, you must
combine a network definition and message generation decks into a script, as
explained in Chapter 19, “Integrating decks with network definitions,” on page
247. Then, you can run a sample test and request message tracing. Finally, run the
Loglist Utility to format these traces.

For more information about trace reports, see WSim User's Guide. For complete
information about the Loglist Utility, see WSim Utilities Guide.

102 Creating Workload Simulator Scripts

Developing scripts
As discussed in Chapter 10, “Getting started with message generation decks,” on
page 95, message generation decks relate closely to the network definition.
Coordinate the coding of the network definition statements and the message
generation decks, especially if you are coding complex scripts.

Before you create the message generation decks for your test, however, spend some
time writing test scripts in commonplace English sentences. These test scripts must
detail all the steps that you are testing. Writing these test scripts in English helps
ensure that you completely understand the steps before you spend time creating
message generation decks.

It is best to begin by developing the network definition and message generation
decks on a small scale. In the long run, this simplifies development of complex
simulations and enables you to correct errors and misunderstandings in a smaller
environment before moving to a larger simulation.

In general, begin with a network consisting of a limited number of terminals, and
create a simple message generation deck. Then, you can integrate the network
definition with the deck to create a script. When you get this script to run correctly,
you can gradually add more network definition statements and more message
generation decks.

For example, you might begin by defining one terminal of the type you will
simulate. Then, write a message generation deck that logs the terminal on to the
application and then sends and receives a message. When your script accomplishes
this task successfully, add more message generation decks so that the terminal can
perform more tasks. After you have one terminal functioning successfully, add
more terminals.

Continue testing your script in an iterative fashion, changing either the network
definition or message decks each time. This process makes it easier to identify
errors if they occur.

Checklist for creating message generation decks
The following checklist presents steps that you can follow to create message
generation decks. The first two steps help you identify the types of resources and
messages you will be simulating, and special requirements for your system. The
third and fourth steps list considerations related to designing and documenting
your message generation decks. The remaining steps describe procedures that can
help you code and test your scripts efficiently.

Identify resources and messages:
1. Understand what you are testing by reviewing the test plan and your system,

and talking to other staff members.
v What type of network are you simulating and what are its requirements?
v What types of terminals are you simulating?
v What types of messages do you expect to receive at the simulated terminals?
v What timing is anticipated for messages to be received? Will they arrive on a

set schedule or at irregular times?
2. Identify special requirements for your system.

Chapter 11. Planning for message generation 103

v Do the message generation decks or the operator interact with the system? If
the operator does, what actions should be taken?

v Does the operator need messages sent to the console to monitor the test's
progress?

v Are there specific devices on the network or system under test that needs
special identification or protocols?

Design and document your decks:

3. Design your message generation deck.
v How should the decks be structured?
v What is the message content of the decks?
v How should the message generation decks and the network definition be

integrated?
4. Document the message generation deck in the header and in comment fields.

Code and test your scripts:
5. Run a sample script through the Preprocessor to test the syntax of the network

definition and message generation statements.
6. Perform a test run using the sample script to make sure the simulation

functions as you intended.
7. Continue coding message generation decks one by one and adding network

components in small groups.

104 Creating Workload Simulator Scripts

Part 3. Coding message generation statements

© Copyright IBM Corp. 1989, 2015 105

106 Creating Workload Simulator Scripts

Chapter 12. Basic concepts

To simulate message traffic between WSim and the system under test accurately,
you need to understand the message generation statements that make up a
message generation deck. This chapter describes the basic concepts you must
understand before coding message generation statements:
v Using appropriate syntax conventions
v Understanding WSim coding requirements
v Coding the MSGTXT and ENDTXT statements
v Coding a sample message generation deck with the TEXT, WAIT, and IF

message generation statements.

This chapter also introduces ways that you can alter the message generation
process by coding delimiters, logic tests, and control statements, which are the
three basic types of message generation statements.

Note: Only one terminal can be in message generation at any one time and
message generation cannot be interrupted.

Syntax conventions for message generation statements
To code message generation statements, you must use WSim syntax. Each
statement can include four fields, some of which are optional:
v Name
v Statement
v Operand
v Comment.

As shown in the following example, you must separate these fields with at least
one blank space and code them in the following order as required by WSim:
Name Statement Operand Comment

You can easily recognize each field by the order in which it appears in the
examples shown in this book.

The following example shows a statement coded in the required format:
OPMSG1 WTO (PROCESSING COMPLETE) Message to operator.

This statement contains the following four fields:

Name OPMSG1, which specifies the name for the statement.

Statement WTO, which specifies the action to be performed; in this case, write a
message to the system operator (WTO specifies write to operator).

Operand (PROCESSING COMPLETE), which specifies text for the message being
sent to the console operator.

Comment Message to operator, which explains the purpose of the statement.

© Copyright IBM Corp. 1989, 2015 107

Note: All of the examples in this book show message generation statements in
upper case. This is not necessary. You may code message generation statements in
mixed case.

Coding the name field
For most message generation statements, you do not need to code a statement
name in the name field. If you want to refer to a statement later in the same
message generation deck, however, you will want to code a name for that
statement.

WSim syntax requires that you begin the name field in column 1 and code 1 - 8
alphanumeric characters. Because WSim recognizes a blank space as the end of a
field, do not use blank spaces in the name field. For example, WSim would not
recognize FIX NOW as a statement name even though it has 7 characters.

Note: WSim requires that you enter a number in the name field for certain IF
message generation statements. The number you enter determines the order in
which WSim evaluates IF statements that perform logic testing on messages sent to
and received from the system under test. For more information about the IF
statement, see Chapter 16, “Defining logic tests,” on page 165.

Coding the statement field
A statement field contains a valid WSim statement, which can be in mixed case.
Unlike the name field, which is optional, you must code the statement field for
each message generation statement. The statement field identifies the action to be
taken by a simulated resource. To specify a statement name, separate the statement
field from the name field by at least one blank space. If you do not specify a name
in the name field, you can begin the statement in any column following column 1.

All message generation statements are listed alphabetically in the WSim Script
Guide and Reference.

Coding the operand field
The operand field specifies the name of one or more operands that qualify a
statement's action. If you specify an operand field, separate it from the statement
field by at least one blank space. Because WSim recognizes a blank space as the
end of a field, do not include blank spaces within or between operands. Separate
multiple operands with commas.

For certain message generation statements, you must code only the name of an
operand in the operand field. For example, the SCROLL statement might include
the operand DOWN, as shown in the following example:
MOVE1 SCROLL DOWN Resource scrolls down.

In WSim, however, some statements do not require an operand in the operand
field:
v Some statements do not have an associated operand.
v Some statements require only text in the operand field.
v Some statements require an operand name followed by a value that qualifies the

operand.

The following section describes the syntax for coding text in the operand field.

108 Creating Workload Simulator Scripts

Entering message text
The operand field can include text enclosed within text delimiters. Text delimiters
are characters that identify the contents as text. On the TEXT statement, for
example, you can code the operand field with a message you want to send to the
system under test. You can also code text for the WTO statement to define the
message thatWSim sends to the operator console.

The following example shows message text entered on a TEXT statement and a
WTO statement.
MSG1 TEXT (INVALID PASSWORD) Message to system under test.
WTOMSG WTO (PROCESSING COMPLETE) Message to console.

As shown in this example, the default text delimiters, the right and left
parentheses, enclose each message. You can change the default text delimiters by
coding different characters on the MSGTXT statement's TXTDLM operand. For
more information about the MSGTXT statement and the TXTDLM operand, see
“Coding the MSGTXT and ENDTXT statements” on page 111.

Note: You can enter uppercase or lowercase text within text delimiters. The
examples in this book, however, show uppercase message text to help you
distinguish it from text entered in the comment field.

When you code messages in the operand field, enter at least one blank space after
the statement field and then enter the text enclosed by text delimiters. You can
include blank spaces within the data enclosed by text delimiters.

There are several ways to code a message that extends over more than one line.
You can code text through column 71 and then begin the remaining text in column
2 of the following line, as shown in the following example:
Column Column
1 71

TEXT (THIS IS A MESSAGE TO BE CONTINUED TO THE NEXT LI
NE USING THE FIRST CONTINUATION METHOD.)

Note: WSim truncates any data that extends past column 71.

As shown in the next example, you can also enter segments of messages on several
lines. You must enclose each segment within text delimiters, and each line
containing continued text must end with a comma or a plus sign.WSim
concatenates all three message segments into one message when processing the
statement.
MSG1 TEXT (ENTER PASSWORD), Message to system under test.

(TO COMPLETE),
(LOGON)

You can also continue message text on the TEXT statement by coding MORE=YES.
When you use this operand, WSim concatenates the text on two successive TEXT
statements, enabling you to build messages with variable data in certain fields.

Entering operands and operand values
The operand field may include operand values in addition to the operand. In the
following example, the COUNT operand on the MSGTXT statement is coded with
the numeric value 20 and the TEXT operand on the IF statement is coded with the
text value READY.
DECK1 MSGTXT COUNT=20 WSim processes DECK1 20 times.
1 IF TEXT=(READY),WHEN=IN, Defines logic test.

LOC=RU+0,THEN=CONT

Chapter 12. Basic concepts 109

To code operands with associated values, first enter the operand name; then, enter
an equal sign followed by text or numeric values extending through column 71.
Remember WSim truncates any data that extends past column 71. Do not code
blank spaces around the equal sign or within the qualifying value.

Note: In the preceding example, the number 1 appears in the IF statement's name
field. WSim requires that you enter a number in the name field of IF statements
coded with the operands WHEN=IN and WHEN=OUT.

When you code multiple operands on a statement, use a comma to separate
operands and to show that additional operands appear on the following line:
GO1 CALL LABEL=MOVE2, Next statement to be executed.

NAME=DECK5 Name of deck containing statement named MOVE2.
ADD CALC LOC=N+5, Addition calculation.

VALUE=+500

Do not include blanks between operands.WSim uses a blank space to distinguish
between fields within a statement.

Coding comments and the comment field
The comment field provides supplemental information about the statement or
operand, such as describing the action or procedure to be followed by the
simulated resource. Although message generation statements do not require
comments, you may want to use comments often to clarify the action or procedure
represented by the statement.

The following example shows how to code comments in the comment field:
LOGMSG LOG DISPLAY Writes the display buffers to the log data set.

You can code comments in the comment field in one of the following situations:
v The statement has no operands
v The statement has operands and at least one of them has been coded.

Note: If you do not code operands for a statement that has allowable operands, do
not code a comment in the comment field. WSim attempts to interpret comments
entered in this way as an operand.

Comments can also be coded on a separate line when that line begins with an
asterisk (*) in column 1:
WAIT1 WAIT
* This is a comment for the preceding WAIT statement.

You can also use comments to create a header for your script. By entering an
asterisk followed by information that describes your coding, you can provide extra
documentation for your scripts. The figures in this chapter illustrate message
generation decks with headers. When you create these headers, however, be sure to
code them after the MSGTXT statement or the Preprocessor will delete them.

Basic message generation statements
When you code a message generation deck, you combine a set of message
generation statements according to the syntax and coding conventions discussed in
the preceding sections. While coding statements with the appropriate syntax, you
place them in a particular sequence depending on the messages you want the
simulated resources to generate.

110 Creating Workload Simulator Scripts

Just as WSim requires specific syntax and coding conventions for message
generation statements, you create message generation decks according to specific
coding conventions. For example, each message generation deck must begin with
an MSGTXT statement and end with an ENDTXT statement. Between these two
statements, you place message generation statements that define messages to be
generated by the resources WSim simulates.

In addition to the MSGTXT and ENDTXT statements required by WSim, you can
code many different statements in each message generation deck. Although many
message generation statements are listed in the WSim Script Guide and Reference,
you can use three basic statements to code simple, yet productive decks:
v TEXT
v WAIT
v IF.

These three message generation statements provide the basis for creating complex
simulations. As you learn about each statement and understand how they relate to
each other, you can soon write message generation decks that simulate many types
of terminal sessions.

This chapter briefly describes the basic message generation statements. For more
information about using these statements, see the following chapters:
v Chapter 13, “Generating messages with the TEXT statement,” on page 117
v Chapter 14, “Understanding delimiters,” on page 137
v Chapter 15, “Understanding intermessage delays,” on page 153
v Chapter 16, “Defining logic tests,” on page 165.

Coding the MSGTXT and ENDTXT statements
The following example illustrates the basic format of a message generation deck,
including the two message generation statements required in WSim, the MSGTXT
and ENDTXT statements. It also illustrates the coding conventions used for
examples in this book:
v Vertical dots represent parts of a deck not shown in a particular example.
v Lowercase, italicized words and letters represent variables for which you can

enter specific information.
name MSGTXT operand
*
* Sample Message Generation Deck
* This message generation deck begins with the MSGTXT statement.
* The vertical dots represent additional statements that make up the
* body of the deck; the ENDTXT statement marks the end of the deck.
*
* WSim requires the name field on the MSGTXT
* statement.
*

. All other message generation statements appear

. between the MSGTXT and ENDTXT statements.

.
*

ENDTXT The ENDTXT statement marks the end of the deck.

Each message generation deck begins with the MSGTXT statement. Unlike
operands on other message generation statements, operands on the MSGTXT
statement perform important functions that affect every statement in the message
generation deck. The following list shows some of the possible operands.

Chapter 12. Basic concepts 111

CONCHAR Specifies the control character you are using as a text delimiter for data field
options in the current deck. The default CONCHAR is the dollar sign ($).

COUNT Specifies the number of times WSim processes a deck during message
generation before selecting and processing another deck. The default is 1.

PAD Specifies the character you are using to pad generated messages to a certain
length. The default is the alphabet.

TXTDLM Specifies the text delimiter you are using to separate messages from other
fields in the current deck. The default text delimiters are the left and right
parentheses ().

WSim requires that you specify a unique name in the MSGTXT name field.
Because WSim references the deck by the name you specify, assign a different
name to each message generation deck, even if you are using decks for different
resources. The following example illustrates coding for the MSGTXT statement:
DECK1 MSGTXT CONCHAR=# Specifies that you are separating data field
* options with a # symbol.

When you code a message generation deck, the ENDTXT statement specifies the
end of the deck. The ENDTXT statement causes WSim to stop processing the
current message generation deck and begin processing another. The ENDTXT
statement has no operands associated with it.

To code the ENDTXT statement, complete the required fields in the appropriate
syntax, as shown in the following example:

ENDTXT Specifies the end of a message generation deck.

Note: You cannot nest MSGTXT and ENDTXT statements. Each MSGTXT signals
the beginning of a deck; each ENDTXT signals the end of a deck.

For additional information about the MSGTXT statement, its operands, and the
ENDTXT statement, see the WSim Script Guide and Reference.

Coding the TEXT statement
The TEXT statement defines the messages that simulated resources transmit to the
system under test. For example, to simulate an operator logging on to the system
under test, you would complete the required TEXT statement fields in the
appropriate syntax, as shown in the example below.
DECK1 MSGTXT
* Sample Message Generation Deck
* This message generation deck begins with the MSGTXT statement
* and ends with the ENDTXT statement. The TEXT statements
* make up the body of the deck.
*
LOGON1 TEXT (ID1523) System user ID to be sent from simulated
* resource to system under test.
LOGON2 TEXT (PW1523) System password to be sent from simulated
* resource to system under test.

ENDTXT Sends LOGON2 and specifies end of DECK1.

This message generation deck is complete. The MSGTXT and ENDTXT statements
mark the beginning and end of the deck as required by WSim, and the TEXT
statements define data to be sent to the system under test.

The first text statement, however, does not actually cause WSim to send the
message. When WSim processes a TEXT statement, it stores the message in the
terminal buffer. This message remains in the buffer until another statement causes

112 Creating Workload Simulator Scripts

WSim to send the message. In the sample message generation deck, WSim places
the first message, ID1523, in the terminal buffer when it processes the first TEXT
statement. The second TEXT statement causes WSim to send the first message and
interrupts message generation. When the device reenters message generation,
WSim places the second message, PW1523, in the terminal buffer. Then WSim
processes the ENDTXT statement, which sends the second message to the system
under test and ends this pass through message generation for the device.

You can also code a WAIT statement in addition to the TEXT statements in the
sample deck. As discussed in the following section, a WAIT statement also
causesWSim to send messages to the system under test.

Coding the WAIT statement
The WAIT statement simulates the action of a terminal operator waiting for a reply
before entering the next message. When WSim encounters a WAIT statement in a
message generation deck, it transmits any message in the terminal buffer and
suspends message generation for a specified length of time or until a specified
event occurs.

You can use a WAIT statement to prevent a device from reentering message
generation until an expected response is received from the system under test. The
following example illustrates the sample message generation deck with the
addition of a WAIT statement.
DECK1 MSGTXT
* Sample Message Generation Deck
* This message generation deck begins with the MSGTXT statement
* and ends with the ENDTXT statement. The TEXT and WAIT statements
* make up the body of the deck.
*
LOGON1 TEXT (ID1523) System user ID to be sent from simulated
* resource to system under test.
WAIT1 WAIT
* Sends LOGON1 to the system under test
* and suspends message generation.
LOGON2 TEXT (PW1523) System password to be sent from simulated
* resource to system under test.

ENDTXT Sends LOGON2 to the system under test.

The WAIT statement causes WSim to send the message defined by LOGON1 to the
system under test and to set a WAIT indicator that delays further processing of the
message generation deck. WSim will not process the message defined by LOGON2
until you take an action that resets the WAIT indicator.

To reset the WAIT indicator and resume processing of the message generation
deck, you can code an IF statement, as discussed in the following section.

Coding the IF statement
In the sample message generation deck, the WAIT statement sends the first
message and stops further processing of the deck. You can reset the WAIT
indicator and continue processing the deck by adding an IF statement to the
sample deck.

The IF statement causes WSim to perform a specified logic test. For example, you
might want to continue processing a deck when you receive a specific message
from the system under test. As shown in the example below, you can code an IF
statement to reset the WAIT indicator when the terminal receives the message
ENTER PASSWORD.

Chapter 12. Basic concepts 113

DECK1 MSGTXT
* Sample Message Generation Deck
* This message generation deck begins with the MSGTXT statement and
* ends with the ENDTXT statement. The TEXT, IF, and WAIT statements
* make up the body of the deck.
*
LOGON1 TEXT (ID1523) System user ID to be sent from simulated
* resource to system under test.
1 IF TEXT=(ENTER PASSWORD), Sets up a logic test for a reply

LOC=RU+0,SCAN=YES, to LOGON1.
THEN=CONT

WAIT1 WAIT
* Sends LOGON1 to the system under test
* and suspends message generation.
LOGON2 TEXT (PW1523) System password to be sent from simulated
* resource to system under test.

ENDTXT Sends LOGON2 and specifies end of DECK1.

The operands on the IF statement tell WSim to continue processing the message
generation deck when the terminal receives the message ENTER PASSWORD:

TEXT=(ENTER
PASSWORD)

Specifies the text data WSim uses in the comparison.

LOC=RU+0 Specifies the starting location at which the comparison takes
place.

SCAN=YES Specifies that WSim scans each data stream received by the
terminal sequentially for the data specified by the TEXT
operand.

THEN=CONT Specifies that message generation continues after the terminal
receives the specified data and resets the WAIT indicator
when the expected message is received.

Note: If the message ENTER PASSWORD is never received after WSim processes
WAIT1 in the preceding example, message generation will never continue.

Note that you code the IF statement before the WAIT statement. This is because
the WAIT statement suspends message generation. If you code the IF statement
following the WAIT statement, WSim stops processing the deck before reading the
IF statement. Subsequently, there is no way to reset the WAIT indicator. For more
information about the WAIT indicator, see “Understanding the WAIT indicator” on
page 144.

When WSim processes the sample deck, it sends “ID1523” to the system under test
and waits for the appropriate reply, “ENTER PASSWORD”. After receiving the
reply, WSim sends “PW1523” to the system under test.

Figure 19 on page 115 shows the actions that take place when WSim processes each
statement on the sample deck and the timing of the messages going to the system
under test.

114 Creating Workload Simulator Scripts

The following section describes how different types of message generation
statements are classified.

Classification of message generation statements
To create message generation decks, you code message generation statements that
define messages for WSim simulated resources. In the preceding sections, you
learned about the message generation statements that WSim requires in each deck,
the MSGTXT and ENDTXT statements, and optional statements like the TEXT,
WAIT, and IF statements. In addition, WSim provides many other message
generation statements that help you code even the most complex message
generation deck.

Each statement can be classified into the following three categories:
v Delimiters
v Logic tests
v Control statements.

The following sections introduce each type of statement and discuss how you
control the message generation process by coding them in your message generation
decks.

Understanding delimiters
When you create a deck, the TEXT statement defines the message you want to
send but does not send the message. To send a message stored in the terminal
buffer, you can code one of the unconditional delimiters: the WAIT, STOP, or
QUIESCE statement. An unconditional delimiter always interrupts the message
generation process and sends a message stored in the buffer.

WSim also provides conditional delimiters, statements that act as delimiters under
certain message generation conditions or during a specific type of simulation. For
example, a TEXT statement acts as a delimiter if WSim already has a message in

Statement Action
--------- ------
TEXT Put message into terminal buffer (ID1523).

IF Activate IF, searching for ENTER PASSWORD.

WAIT Transmit buffer contents and set WAIT indicator.

Simulated ID1523 VM
Terminal ─¦¦¦→ System

Simulated ENTER PASSWORD VM
Terminal ←¦¦¦─ System

IF evaluation and action taken: reset WAIT (CONT).

TEXT Put text data into terminal buffer (PW1523).

ENDTXT Transmit buffer contents.

Simulated PW1523 VM
Terminal ─¦¦¦→ System

Continue with next message generation deck.

Figure 19. How WSim processes the sample message generation deck

Chapter 12. Basic concepts 115

the terminal buffer and if the MORE operand was not coded on the previous TEXT
statement. The CTAB statement acts as a delimiter during 3270 simulation.

For more information about each type of delimiter and about using delimiters to
interrupt message generation, see Chapter 14, “Understanding delimiters,” on page
137.

Understanding logic tests
The IF message generation statement enables you to alter the message generation
process by testing counter values, switch settings, messages sent or received by a
simulated terminal, and the status of events. You can also code IF statement logic
tests that evaluate messages from the system under test to determine whether the
system is operating correctly.

WSim provides two types of logic tests: network-level logic tests and message-level
logic tests. You define network-level tests by coding IF statements in the network
definition. You define message-level tests by coding IF statements in the message
generation deck. Network-level tests remain active throughout the message
generation process, unlike message-level tests which may be deactivated. In
addition, WSim evaluates network-level tests for all devices in the network while
message-level tests apply only to devices that execute the message generation deck
that contains the tests.

Chapter 16, “Defining logic tests,” on page 165 provides a complete discussion of
the IF message generation statement and message-level logic tests. For detailed
information about network logic tests, see Part 1, “Defining WSim networks,” on
page 1.

Understanding control statements
Unlike delimiter and logic test statements, control statements do not interrupt or
alter the message generation process. When WSim encounters a control statement,
it executes the statement immediately and then continues processing the next
statement in the deck. These statements perform varied functions in message
generation decks.

See Chapter 17, “Understanding control statements,” on page 195 for a complete
description of the control statements provided by WSim.

116 Creating Workload Simulator Scripts

Chapter 13. Generating messages with the TEXT statement

In WSim, you define messages for simulated resources by coding data on the TEXT
statement. As discussed in Chapter 12, “Basic concepts,” on page 107, WSim reads
the message during message generation and places it in the terminal buffer. When
WSim encounters a message generation statement that serves as a delimiter, it
sends the message to the system under test.

This chapter describes using the TEXT statement to generate messages in the
following ways:
v Manually
v Dynamically with data field options
v Generating random numbers
v Using data from user table entries
v Using data with sequence and index counters
v Using data from save and user areas.

In special situations, you also define data in messages with the CMND and STRIPE
message generation statements. For more information about generating messages
in such situations, see Chapter 18, “Generating messages for specific types of
devices,” on page 219.

Note: If a TEXT statement is specified in a message deck that is part of a
transaction program (TP) it is ignored. Transaction program messages are
generated using CPI-C verb statements.

Generating messages manually
To generate messages manually for a simulated resource, you enter data in the
TEXT statement data field. You can enter either text or hexadecimal characters,
specifying each character you want to send in your message. The following
sections describe how you code each type of data and how you can combine types
of data in one statement.

Entering data
You code message data within text delimiters, which by default are the left and
right parentheses. The following example illustrates the coding for text and
hexadecimal characters:
MSG1 TEXT (ENTER YOUR PASSWORD) Message with text.
MSG2 TEXT (’AB’) Message with hexadecimal characters.

Note: Hexadecimal data must be enclosed within single quotation marks. See
“Simulating DBCS data entry for simulated 3270 DBCS terminals” on page 241 for
more information about entering DBCS data.

Combining types of data
Although you will usually code messages by entering text in a single format, you
can code a message in a combination of both types of data. In the following
example, the message “ENTER PASSWORD” appears in text, hexadecimal
characters, and a combination of both types of data:

© Copyright IBM Corp. 1989, 2015 117

MSG5 TEXT (ENTER PASSWORD) Message in text.
MSG6 TEXT (’C5D5E3C5D940D7C1E2E2E6D6D9C4’) Message in hexadecimal characters.
MSG7 TEXT (’C5D5E3C5D9’ PASSWORD) Message in text and hexadecimal
* characters.

In MSG6, notice that the blank space between ENTER and PASSWORD appears as
hexadecimal X'40'. If you do not code a blank space in this position, WSim sends
the message “ENTERPASSWORD”. To avoid processing errors, remember to enter
spaces in your messages, whether you are coding text or hexadecimal characters.

WSim recognizes everything coded within the text delimiters as part of the
message.

Generating messages dynamically
When you create a message generation deck, you might not want to code a
message manually for every message sent to the system under test. For example,
you might have several fields in each message, each field containing one of several
possible values. Instead of coding many statements for each possible value,
simplify the coding process by generating messages dynamically with data field
options. A data field option is a value you code in a data field to retrieve data that
WSim can access.

You can code data field options to generate different kinds of messages
dynamically for many different simulated resources. For example, you code some
data field options only on the TEXT statement; you code others on statements such
as the WTO, CMND, and LOG statements. WSim also provides options you code
only when you simulate a specific resource.

“Understanding data field option use” on page 119 provides a discussion of the
different types of data field options available with WSim. For a complete list of
data field options and information about coding requirements, see the WSim Script
Guide and Reference.

Understanding data field option syntax
To code a data field option, you enclose the option within a special control
character that you can define with the CONCHAR operand on the MSGTXT
statement. In the following example, the $DATE$ data field option appears within
dollar signs, the default value for the CONCHAR operand:
MSG1 TEXT ($DATE$) Data field option for the current date.

When WSim processes the TEXT statement in the preceding example, it inserts the
current date into the message as EBCDIC characters. By default, WSim formats the
date as MMDDYY: month, day, and year. For example, January 2, 1996 appears as
010296. (Refer to WSim Script Guide and Reference for a complete list of format
options for this data field option.)

Note that the data field option in the preceding example appears within the
default text delimiters, the left and right parentheses. If you change CONCHAR or
TXTDLM on the MSGTXT statement, do not code the same character on both
operands. For example, if you use parentheses as text delimiters, you cannot use
parentheses as control characters for data field options in the same deck.

The following example shows how you change the control character with the
MSGTXT statement:

118 Creating Workload Simulator Scripts

DECK1 MSGTXT CONCHAR=# Specifies the # symbol as the data field
* option control character.
MSG1 TEXT (#DATE#) Data field option for the current date.

As a convention for the examples in this book, data field options appear enclosed
within the default control character, $.

Understanding data field option use
To understand the data field options available in WSim, the options differ from
one another in the way they generate messages. Some options refer to information
WSim maintains internally, such as the current month and time. As shown in the
following example, the $MONTH$ and $YEAR$ data field options insert the 2-digit
numbers for the current month and year directly into a message:
MSG10 TEXT ($MONTH$) Message to be generated.
MSG11 TEXT (ENTER PASSWORD), Message to be generated.

(FOR $MONTH$/$YEAR$)

When WSim processes MSG10 for May, it sends the message “05”. When WSim
processes MSG11 in June 2001, it sends the message “ENTER PASSWORD FOR
06/01”. If WSim processes MSG11 again in April 2002, it sends the message
“ENTER PASSWORD FOR 04/02”.

As illustrated in the preceding example, the $MONTH$ and $YEAR$ options
simplify the message generation process. Even though you code each message only
once, WSim inserts variable data that creates a different message for each month
and year.

Although options like $MONTH$ can stand alone as the only data coded in a
statement's data field, other options require you to code additional data. These
data field options indicate to the system under test that the accompanying data
originates from a specific resource. For more information about using data field
options to generate messages for specific simulated resources, see Chapter 18,
“Generating messages for specific types of devices,” on page 219.

The following sections explain how to use some of the data field options available
with WSim to perform various tasks:
v Generate random numbers
v Generate data from user tables
v Generate data using counters
v Retrieve data from user or save areas.

For a complete list of the data field options available with WSim, see the WSim
Script Guide and Reference.

Random numbers
Using the $RNUM$ data field option, you can insert random numbers into
messages dynamically instead of selecting and coding a different number for each
TEXT statement. You can generate a random number with the $RNUM$ option in
the following ways:
v Specify the number of digits for the random number and a range of numbers

that the random number falls within by coding the $RNUM$ option on a TEXT
statement.

v Specify the range of numbers on an RN network definition statement. Then
reference that range with the $RNUM$ option on a TEXT statement.

Chapter 13. Generating messages with the TEXT statement 119

The following sections describe both methods of coding the $RNUM$ data field
option.

Specifying a range of numbers
With the $RNUM$ data field option, you can specify a range of numbers from
which WSim generates a random number:
MSG1 TEXT ($RNUM,lo,hi,n$) Generates a random number n digits long
* between a low and high value.

In this example, lo and hi specify the low and high values in a range of numbers.
You can code lo as an integer from 0 to 2147483646 and hi as an integer from 1 to
2147483647. lo and hi can also be counter specifications whose values are within
this range. n specifies how many digits the random number can contain and is an
integer from 1 to 10. hi must be greater than lo.

Note: If WSim generates a random number shorter than n, WSim pads the number
with leading zeroes until it is the specified length. If the generated number is
longer than n, WSim truncates the number on the left.

The following example illustrates the coding required to generate a 3-digit random
number from 0 to 999:
MSG1 TEXT ($RNUM,0,999,3$) Generates 3-digit random number from 0 to 999.

When WSim processes MSG1, it generates a 3-digit number whose value can be
from 0 to 999 and sends that number to the system under test as MSG1.

Using the RN network definition statement
With the RN random number statement, you can specify a range of numbers when
you code the network definition:
NET1 NTWRK
* Beginning of NET1.
1 RN LOW=10,HIGH=50 Specifies range for random numbers.

When you reference this range of numbers with the $RNUM$ data field option,
WSim generates a random number within the specified range. In the preceding
example, note that a number 1 appears in the RN statement's name field. By
coding each RN statement with a unique number, you can reference each statement
from the message generation deck.

To reference an RN network definition statement, code the $RNUM$ data field
option with the following syntax:
MSG1 TEXT ($RNUM,m,n$)
* Generates a random number from a range
* specified on an RN statement.

m specifies the number of an RN statement and is an integer from 0 to 4095. n
specifies how many digits the random number contains and is an integer from 1 to
5. If WSim generates a random number shorter than n, WSim pads the number
with leading zeroes until it is the specified length. If the generated number is
longer than n, WSim truncates the number on the left.

As shown in the following example, code m as a 1 to reference RN statement 1 and
code n as a 2 to generate a random number 2 digits long:
NET1 NTWRK
* Beginning of NET1.

.

. Network definition statements.

120 Creating Workload Simulator Scripts

.
1 RN LOW=10,HIGH=50 Specifies range for random numbers.

.

. Network definition statements.

.
DECK1 MSGTXT
* Beginning of DECK1.
MSG1 TEXT ($RNUM,1,2$) Generates a 2-digit random number from
* the range specified on RN statement 1.

.

. Message generation statements.

.

When WSim processes the statements in the preceding example, it generates a
2-digit random number from the range 10 to 50 and sends that number as the
message generated by MSG1.

For complete information about the syntax and coding conventions WSim requires
for the $RNUM$ data field option, see the WSim Script Guide and Reference.

User tables
When you create a message generation deck, you may have several data fields in
your messages, each of which may have several possible values. To use different
combinations of fields and values, code a user table, which is a collection of data
that contains possible values for a specific field. For example, you can code a user
table that provides a complete list of employee names. When you code a reference
to this user table on the TEXT statement data field, WSim selects an entry, that is,
an employee name, and inserts it into messages sent to the system under test.

The following sections provide detailed information about defining a user table
and selecting table entries with the $UTBL$ data field option.

Defining a user table
In WSim, you can define a user table with one of the following statements:
v The MSGUTBL message generation statement.
v The UTBL network definition statement

Each user table may contain up to 2147483647 entries; each entry may contain any
number of characters. However, it may be truncated to 32767 characters during
message generation.

To create a table that you can reference from several network definitions, code the
MSGUTBL message generation statement. To define a user table with the
MSGUTBL statement, you must code a name in the MSGUTBL's name field. Then
code table entries by enclosing data within parentheses and separating entries with
a comma. To place hexadecimal data in a user table, remember to enclose the digits
within single quotes: for example, ("1234").

The following example shows how to code the MSGUTBL statement:
PARTNUMS MSGUTBL (NUM1),(NUM2), Defines entries for a user table named

(NUM3),(NUM4) PARTNUMS.

When you code the MSGUTBL statement, WSim maintains the set of table entries
as a separate member of a partitioned data set along with any message generation
decks that refer to the table. The MSGUTBL statement is not a part of any one
network definition or message generation deck; you do not code this statement
between a deck's MSGTXT and ENDTXT statements. All MSGUTBL statements

Chapter 13. Generating messages with the TEXT statement 121

must follow the network definition statements or be previously stored in the
partitioned data set named by the MSGDD DD statement. You do not have to code
MSGUTBLs before a script's MSGTXTs; they can be interspersed with them.
MSGUTBLs are separate members of the MSGDD data set.

To define a user table with the UTBL network definition statement, you must enter
an integer from 0 to 4095 in the statement's name field; WSim requires this integer
to identify the user table. Then code table entries by enclosing data within
parentheses and separating entries with a comma. To place hexadecimal data in a
user table, you must also enclose the data within single quotes: for example,
("1234").

The following example shows how to code the UTBL statement:
1 UTBL (SMITH),(JONES), Defines entries for user table 1.

(BAILEY),(ROSS)

You can code one table in many networks by coding the same table in several
network definitions with several UTBL statements. However, to change an entry in
the table, you must change that entry in each network definition.

Note: The entries that you define on the UTBL and MSGUTBL statements are
static; you cannot change the entries during a simulation.

The example below illustrates the coding required to define a user table with both
the UTBL and MSGUTBL statements. The example also shows the placement of the
MSGUTBL statement.
NET1 NTWRK
* Sample WSim Script
* This script illustrates the coding required to define user tables
* with the UTBL and MSGUTBL statements.
*
* Beginning of NET1.
*

.

. Network definition statements.

.
1 UTBL (SMITH),(JONES), Defines user table 1.

(BAILEY),(ROSS)
.
. Network definition statements.
.

PARTNUMS MSGUTBL (NUM1),(NUM2), Defines user table PARTNUMS.
(NUM3),(NUM4)

DECK1 MSGTXT
* Beginning of DECK1.

.

. Message generation statements.

.
ENDTXT End of DECK1.

In this example, the UTBL statement defines user table 1 within the network
definition of NET1; the MSGUTBL statement defines a user table named
PARTNUMS. Notice that you code the MSGUTBL statement after the network
definition statements.

When you define a user table on the MSGUTBL statement, you can reference the
table on a UTBL statement in the network definition. As shown in the following
example, code the table's name on the UTBL statement in the operand field.

122 Creating Workload Simulator Scripts

NET1 NTWRK
* Beginning of NET1.
1 UTBL PARTNUMS References user table PARTNUMS.

.

. Network definition statements.

.
PARTNUMS MSGUTBL (NUM1),(NUM2), Defines user table PARTNUMS.

(NUM3),(NUM4)

As discussed in the following section, you can select table entries from a table
defined on a UTBL statement or a MSGUTBL statement. You can also select table
entries from a table that is defined on a MSGUTBL statement and then referenced
by name on a UTBL statement.

Generating messages with the $UTBL$ data field option
After you have defined a user table and coded the table's entries, you can generate
messages by selecting table entries with the $UTBL$ data field option.
MSG1 TEXT ($UTBL,id,sel$) Coding to insert a user table entry into
* a message sent to the system under test.

When you code the $UTBL$ option, id specifies the name of a MSGUTBL statement
or the number of a UTBL statement. sel specifies how WSim selects the entry from
the user table. As discussed in the WSim Script Guide and Reference, WSim provides
several values for sel that enable you to determine how WSim selects a table entry:

Fn Specifies fixed selection, that is, WSim selects the same entry each time it
processes the $UTBL$ option. n is an integer that specifies the index of the
entry WSim selects from the user table. If n exceeds the number of entries
in the table, WSim does not select an entry or include any data in the
message being generated.

R Specifies random selection of an entry. WSim generates a random number
and then selects the entry with the corresponding index.

Rn Specifies random selection based on a probability distribution defined by
UDIST network definition statement n. n is an integer from 0 to 4095.

cntr Specifies selection of an entry based on the value of an index counter. For
more information about selecting user table entries with index counters,
see “Index counters” on page 127.

Note: An index is a number used to identify entries in a user table.

To specify fixed selection of table entries, code the $UTBL$ option as shown in the
following example:
MSG1 TEXT ($UTBL,id,Fn$) Coding for fixed selection of table entries.

WSim uses zero indexing for user tables. That is, it indexes entries sequentially
beginning with 0. For example, you can specify fixed selection of the fourth entry
as shown in the following example:
PARTNUMS MSGUTBL (NUM1),(NUM2),(NUM3), Defines entries for a user table

(NUM4),(NUM5),(NUM6) named PARTNUMS.
.
. Message generation statements.
.

MSG1 TEXT ($UTBL,PARTNUMS,F3$) WSim selects the entry indexed as
* number 3 in table PARTNUMS, which
* is NUM4, the fourth table entry.

Chapter 13. Generating messages with the TEXT statement 123

In MSG1, F3 specifies that WSim selects the entry from PARTNUMS with a
corresponding index of three, which is the fourth entry, NUM4. Because selection is
fixed, WSim selects NUM4 each time it processes MSG1.

To specify random selection of table entries, code the $UTBL$ option as shown in
the following example.
MSG8 TEXT ($UTBL,id,R$) Coding for random selection of table entries.

In this example, R indicates random selection. When WSim processes MSG8, it
generates a random integer and then selects the table entry with an index number
that corresponds to the random integer. In this way, WSim can select a different
entry each time it processes the message generation statement.

You can also select table entries randomly based on a probability distribution
defined on the UDIST network definition statement.
1 UDIST 80,20 Assigns weights for selecting entries.

As shown in the preceding example, WSim requires an integer in the UDIST
statement's name field. The numbers you code in the UDIST statement's operand
field assign weights to corresponding table entries. Each weight represents a
fraction that determines the probability that WSim selects a particular entry during
message generation. For example, 80 indicates that if WSim processes the statement
100 times on the average, it selects the first entry in a table 80 times or 80% of the
time. The 20 indicates that WSim selects the second table entry 20 times or 20% of
the time. If there are more than two entries in the user table, WSim selects only the
first two entries.

You can code up to a maximum of 2000 weights on a UDIST statement. However,
the number of weights must be less than or equal to the number of entries coded
on the corresponding UTBL or MSGUTBL statement. For example, you cannot
assign 20 different weights to a table with only three entries.

To specify random selection based on a probability distribution, code the $UTBL$
option as shown in the following example.
MSG3 TEXT ($UTBL,id,Rn$) Coding to select an entry based on a
* probability distribution.

In this example, id specifies the number of a UTBL statement or the name of a
MSGUTBL statement that defines the user table which WSim selects an entry; R
specifies random selection. n is the number of the UDIST statement that defines
the probability distribution.

The sample script shown below illustrates a network definition and message
generation deck with the coding required to select an entry based on a probability
distribution.
NET1 NTWRK
* Sample WSim Script
* This script illustrates the coding required to define a table and its
* entries and then select an entry based on a probability distribution.
*
* Beginning of NET1.
*

.

. Network definition statements.

.
2 UDIST 50,30,20 Defines a probability distribution.

.

124 Creating Workload Simulator Scripts

. Network definition statements.

.
TBL1 MSGUTBL (1487),(7911), Entries for user table TBL1.

(1098)
.
. Other MSGUTBLs and MSGTXTs.
.

DECK3 MSGTXT
* Beginning of DECK3.
MSG5 TEXT ($UTBL,TBL1,R2$) Defines random selection of entries from
* TBL1 with distribution defined by UDIST 2.

.

. Message generation statements.

.
ENDTXT End of DECK3.

Every time WSim processes the TEXT statement named MSG5, it selects a table
entry from the table defined by MSGUTBL statement TBL1 based on the
distribution defined by UDIST statement 2. WSim selects the first table entry 50%
of the time, the second table entry 30% of the time, and the third table entry 20%
of the time. Since the selection is specified as random, entries will be selected
randomly in this proportion.

For complete syntax and coding requirements for the UDIST statement, see the
WSim Script Guide and Reference.

Sequence and index counters
A counter is a storage location used to hold a numeric value. To help you generate
a message dynamically, WSim provides two kinds of counters: sequence counters
and index counters. The two types vary slightly based on how you assign values
to the counter, how you use the counter to generate messages, and how WSim
increments the counter's value.

WSim automatically provides one sequence counter for each network, line,
terminal, and device. The names of these counters are the following:

NSEQ Network sequence counter.

LSEQ Line sequence counter.

TSEQ Terminal sequence counter.

DSEQ Device sequence counter.

Note: These counters are also allocated to VTAMAPPLs, APPCLUs, TCP/IP
connections, TPs, and LUs. For more information about how counters are assigned,
see Table 10 on page 203.

When you reference a sequence counter on the TEXT statement, WSim inserts the
value of the sequence counter directly into the message data stream. For
information about how WSim determines the value of a sequence counter, see
“Sequence counters” on page 126.

You can specify from 3 to 4095 index counters for each network, line, terminal, and
device. The names of these counters are the following:

NCn Network index counter n.

LCn Line index counter n.

TCn Terminal index counter n.

Chapter 13. Generating messages with the TEXT statement 125

DCn Device index counter n.

As illustrated by Table 10 on page 203, these counters are also allocated to
VTAMAPPLs, APPCLUs, TCP/IP connections, TPs, and LUs. If you specify any
user exits, WSim allocates either the number of index counters specified on the
CNTRS operand or the number of counters referenced in the network, whichever is
greater. If you do not specify any user exits, WSim allocates as many index
counters as are needed and ignores the CNTRS operand. WSim allocates a
minimum of three index counters.

Although WSim can insert the value represented by an index counter into the
message you are generating, you normally use an index counter's value to select an
entry from a user table. For more information about how WSim determines the
value of an index counter, see “Index counters” on page 127.

The following sections describe how to generate messages dynamically with
sequence and index counters. For information about setting the value of a counter
and using counters to position the cursor, see the following sections:
v “Coding the SCANCNTR operand” on page 179 describes the SCANCNTR

operand on the IF message generation statement. With this operand, you can set
a counter to the offset of the text that caused the test condition to be met.

v “Setting switches and counters” on page 202 provides information about setting
the value of a counter with the SET statement.

v “Simulating cursor movement” on page 231 describes how to code the CURSOR
and SELECT statements to position the cursor using the value of one or two
counters.

Sequence counters
You can reference the sequence counters provided by WSim by coding the
following data field options on the TEXT statement:

$NSEQ$ References a network sequence counter.

$LSEQ$ References a line sequence counter.

$TSEQ$ References a terminal sequence counter.

$DSEQ$ or SEQ References a device sequence counter.

When you code a reference to a sequence counter with one of the above data field
options, WSim automatically increments the value of the sequence counter before
inserting the counter's value into the data stream. However, in no other situation
do the sequence counters get automatically incremented. For example, when you
code the $CNTR$ and $CNTRX$ data field options, you can reference the decimal
and hexadecimal values, respectively, of any counter without changing the
counter's value. When WSim increments a sequence counter's value, the value
automatically wraps to 0 after reaching 2147483647.

In addition to the data field option that names a counter, you must also specify the
number of digits for the value WSim includes in the data stream:
MSG1 TEXT ($NSEQ,3$) Increments the value of the network sequence
* counter and inserts a 3-digit value into MSG1.
MSG2 TEXT ($DSEQ,4$) Increments the value of the device sequence
* counter and inserts a 4-digit value into MSG2.
MSG3 TEXT ($CNTR,NSEQ,5$) Inserts the value of the network sequence
* counter without changing the counter’s value,
* which is 5 digits long.

126 Creating Workload Simulator Scripts

MSG4 TEXT ($CNTRX,TSEQ,2$) Inserts the hexadecimal value of the terminal
* sequence counter without changing the counter’s
* value, which is 2 bytes long.

Each time WSim processes MSG1, it increments the network sequence counter's
value by one and inserts the incremented value into the message as a 3-digit
number. When processing MSG2, WSim increments the device sequence counter's
value by one and inserts the incremented value into the message as a 4-digit
number. For MSG3, WSim inserts the network sequence counter's value into the
message as a 5-digit number without changing the counter's value.

Note: If the counter's value has fewer digits than the length specified by the data
field option, WSim pads the value with leading zeroes on the left. If the counter's
value has more digits than the length specified by the data field option, WSim
truncates the number on the left.

Index counters
When you generate messages dynamically with data from a user table, you can
select a table entry with index counters. By coding the $UTBL$ data field option
on the TEXT statement, WSim selects an entry based on the value of the specified
index counter:
MSG2 TEXT ($UTBL,id,sel$) Selects a table entry using the value of an
* index counter.

As discussed in “User tables” on page 121, id identifies a user table with number
of a UTBL statement or the name of a MSGUTBL statement. sel specifies the entry
that WSim selects from that table.

To select a table entry with an index counter, code sel with an option that
references a specific index counter. Remember that WSim enables you to code from
3 to 4095 index counters for each network, line, terminal, or device. After you
reference an index counter, WSim can increment the value represented by an index
counter, depending on how you reference the counter. The value of each index
counter automatically wraps to 0 after you reference the last entry in a user table.

As shown in the following list, each option for sel defines the type of index counter
and the number of the appropriate index counter:

CNn, SNn, and NCn Reference network index counter n.

CLn, SLn, and LCn Reference line index counter n.

CTn, STn, and TCn Reference terminal index counter n.

CDn, SDn, and DCn Reference device index counter n.

Note: When you code the $UTBL$ data field option, you can identify index
counters differently than you do in other statements; compare the coding above
with the names of index counters introduced in “Sequence and index counters” on
page 125.

Each of these options causes WSim to handle the counters differently. To increment
the counter sequentially every time WSim references its value, code an S before the
letter identifying the index counter. For example, reference the value of terminal
index counter 35 and increment the value sequentially with the following coding:

Chapter 13. Generating messages with the TEXT statement 127

MSG8 TEXT ($UTBL,TABLE1,ST35$)
* References the value of terminal index counter
* 35, selects an entry from the user table, and
* increments the value of the counter.

To hold the counter's value constant, code the option with a C:
MSG8 TEXT ($UTBL,TABLE4,CL52$)
* References the value of line index counter 52,
* holds the value constant, and selects an entry
* from user table TABLE4.

NCn, LCn, TCn, and DCn also hold the counter's value constant. When you code
these options, however, WSim does not reset the counter to 0 when it is set to a
value corresponding to an entry beyond the last entry in a user table.

The sample script shown below illustrates how to generate a message that lists an
order for parts. The order consists of values for several fields: an order number, the
quantity of parts required, the part number, and a description of the part. Two user
tables provide the data for the part number and description; the $RNUM$ option
generates a random number for the quantity. The $NSEQ$ option references the
network sequence counter to supply the part number.
NET1 NTWRK
* Sample WSim Script
* This script illustrates the coding required to generate a message
* that references user table entries, generates a random number, and
* references the value of a sequence counter.
*
* Beginning of NET1.
*

.

. Network definition statements.

.
PNUMS MSGUTBL (04128),(34591), Defines part numbers.

(95735),(39782),(89678)
PNAMES MSGUTBL (GIZMO),(SCREW),(NAIL), Defines hardware.

(WIDGET),(STAPLE)
DECK3 MSGTXT
* Beginning of DECK3.
MSG1 TEXT (ORDER $NSEQ,5$ QUANTITY), Generates message.

($RNUM,1,10,2$ PART NO.),
($UTBL,PNUMS,CN1$),
($UTBL,PNAMES,SN1$)

ENDTXT End of DECK3.

With the coding in the preceding example, WSim selects an order number, a part
number, a quantity for that part number, and a description of the part. The coding
for the TEXT statement provides each part of the message:

$NSEQ,5$ Specifies that the value of the network sequence counter be
used as an order number 5 digits long.

$RNUM,1,10,2$ Specifies that WSim inserts a random quantity into the
message that falls within the range from 1 to 10 and is 2 digits
long.

$UTBL,PNUMS,CN1$ Specifies that WSim selects the part number from user table
PNUMS with an index that corresponds to the value in
network index counter 1. The value of network index counter
1 remains constant.

128 Creating Workload Simulator Scripts

$UTBL,PNAMES,SN1$ Specifies that WSim selects the part description from user table
PNAMES with an index that corresponds to the value of
network index counter 1. WSim increments this counter's
value after referencing its value.

By incrementing the counter's value each time WSim selects an entry from
PNAMES, you can select pairs of entries from the two tables. For example, if the
value of network index counter 1 is 3, WSim selects the entry with index number 3
from both tables the first time it processes MSG1. Then WSim increments the
counter's value by 1, which changes its value to 4. The second time WSim
processes MSG1, it selects the entry with index number 4 from both tables and
then increments the counter's value again. Each time WSim processes MSG1 it
selects another pair of entries.

The following example shows one of the possible messages for a sample order
generated from the preceding network and message generation statements:
ORDER 00004 QUANTITY 06 PART NO. 95735 NAIL

Although you code MSG1 in the preceding sample deck only one time, WSim can
send a different message every time it processes the deck.

You can select table entries sequentially or combine sequential selection with the
fixed and random selection of entries discussed in “Generating messages with the
$UTBL$ data field option” on page 123. The script shown in the example below
illustrates the coding required to combine these three methods of selection in one
TEXT statement.
NET7 NTWRK
* Sample WSim Script
* This script illustrates the coding required to combine fixed, random,
* and sequential selection of user table entries.
*
* Beginning of NET7.
*

.

. Network definition statements.

.
ACT MSGUTBL (ORDER),(UPDATE), Entries for action table.

(PRICE)
NUM MSGUTBL (6615),(1976), Entries for part number table.

(5699)
CLR MSGUTBL (RED),(YELLOW), Entries for color table.

(GREEN)

DECK1 MSGTXT
* Beginning of DECK1.
MSG1 TEXT ($UTBL,ACT,F1$), Inserts entries from ACT, NUM, and

($UTBL,NUM,SD2$), CLR into MSG1; the value of device
(COLOR $UTBL,CLR,R$) index counter 2 is 0.

.

. Message generation statements.

.
ENDTXT End of DECK1

When WSim processes the TEXT statement in the preceding example, the following
message could result:
UPDATE 6615 COLOR GREEN

User and save areas
When you code the TEXT statement, you can generate messages for simulated
resources by retrieving data from one of the following user or save areas:

Chapter 13. Generating messages with the TEXT statement 129

v Network user area
v Device user area
v Network save area
v Device save area.

During message generation, you can store and retrieve data in a network user area,
which is a work area for devices that generate messages. You can use a network
user area to store data used by every device on the network or to pass data from
one device to another. As shown in the following example, you can allocate one
network user area for each network with up to 32767 bytes of storage by coding
the NETUSER operand on the NTWRK statement.
NET4 NTWRK NETUSER=32767 Allocates a 32767-byte network user area.

The device user area defines a storage area that serves as a work area for a specific
device. As shown in the following example, you can allocate one device user area
for each device with up to 32767 bytes of storage with the USERAREA operand on
the DEV network definition statement.
DEV1 DEV USERAREA=200 Allocates a 200-byte device user area for DEV1.

WSim does not allocate user areas dynamically; you must request each area with
the appropriate statement and operand. If you reference a user area that you did
not allocate in the network definition, you may have difficulty finding your error.
In addition, WSim does not detect the reference as a syntax error.

A network or device save area stores data used by a specific network or device.
You can allocate up to 4095 save areas per network or device dynamically by
referencing the area from your message generation deck. In addition, the length of
a save area is dependent on the length of data you save rather than a number of
bytes you specify. For example, each time you code a message generation
statement that places data in a save area, WSim automatically provides you with
an area that is equal in length to the data you are saving.

Although network save areas are always allocated dynamically during a
simulation, you can statically allocate a device save area by coding the SAVEAREA
operand on the DEV network definition statement. As shown in the following
example, the SAVEAREA operand enables you to specify the number of save areas
and the bytes of storage:
DEV1 DEV SAVEAREA=(15,100) Allocates 15 device save areas for DEV1,
* each 100 bytes long.

Note: When you code the SAVEAREA operand, each save area that you allocate is
equal in length.

The following sections describe how to code the DATASAVE statement to place
data in a save or user area and how to insert saved data into a message.

Placing data in a user or save area with the DATASAVE
statement
With the DATASAVE message generation statement, you can place data from the
device buffer or data coded manually into a save or user area. Use the following
operands on the DATASAVE statement to code the data you want to save and the
area WSim uses to save the data:
v AREA
v TEXT
v LOC

130 Creating Workload Simulator Scripts

v LENG.

The AREA operand specifies the area that WSim uses to save the data. As shown in
the following list, WSim provides several options for the AREA operand. For
options with a positive or negative offset (±value), code value as an integer 0 -
32766 or the name of a counter whose value is within this range. Zero is the offset
to the first byte of the field for positive offsets (+value) and the offset to the last
byte of the field for negative offsets (-value).

N±value Specifies that WSim saves the data in the network user area, where
+value is the offset from the start of the user area and -value is the
offset back from the end of the user area.

Ns Specifies the network save area WSim uses to save the data, where s
is an integer from 1 to 4095.

s Specifies the device save area WSim uses to save the data, where s
is an integer from 1 to 4095.

U±value Specifies that WSim saves the data in the device user area, where
+value is the offset from the start of the user area and -value is the
offset back from the end of the user area.

Note: If value specifies an offset outside the user area, WSim does not save any
data and writes an informational message to the log data set.

The TEXT operand specifies the data you want to save. Although you can code any
amount of data, WSim truncates data on the right that is longer than the space
available in the save or user area and writes an informational message to the log
data set.

The following example shows the syntax required for the TEXT and AREA
operands:
SAVE1 DATASAVE TEXT=(SAVE A), Specifies the data to be saved.

(MESSAGE),
AREA=N+5 Places the data in the network user

* at a position offset 5 bytes from the
* beginning of the area.

If you do not code the TEXT operand, you must code the LOC and LENG
operands. The LOC operand specifies the location of the data to be saved based on
an area in the screen buffer, on the location of the cursor, or on an area of the data
stream. The following list shows the values WSim provides for the LOC operand.
value is an integer 0 - 32766 or the name of a counter whose value is within this
range. Zero is the offset to the first byte of the field for positive offsets (+value) and
the offset to the last byte of the field for negative offsets (-value).

B±value +value specifies that the data to be saved is located at an offset from
the beginning of the device buffer, excluding any headers. For display
devices, -value specifies that the data to be saved is located at an offset
back from the end of the screen image buffer. For nondisplay devices,
-value specifies that the data to be saved is located at an offset back
from the end of the data in the device buffer.

C±value +value specifies that the data to be saved is located at an offset from
the current cursor position. -value specifies that the data to be saved is
located at an offset back from the current cursor position. Code these
values only for display devices.

D+value +value specifies that the data to be saved is located at an offset from
the beginning of the data stream.

Chapter 13. Generating messages with the TEXT statement 131

TH+value +value specifies that the data to be saved is located at an offset from
the beginning of the transmission header.

RH+value +value specifies that the data to be saved is located at an offset from
the beginning of the request/response header.

RU+value +value specifies that the data to be saved is located at an offset from
the beginning of the request/response unit.

(row,col) Specifies the row and column location of the screen image data to be
saved. row and col are integers 1 - 4095 or names of valid counters.

* Specifies that the data is to be saved from the device buffer location
coded on the last logic test that WSim executed and then took the
specified THEN action. This option is valid only when WSim
encounters the DATASAVE statement as a result of a logic test execute
function (THEN=Ename-label).

The LENG operand specifies how many bytes of data WSim places into the save or
user area. Code LENG=value where value is an integer from 1 to 32767; however,
do not specify an integer for value that exceeds the space available in the user or
save area. If the specified length exceeds the available user or save area space,
WSim uses the available space and then writes an informational message to the log
data set. If the length specified is greater than the length of the data in the device
buffer, WSim only saves the data available.

The following example shows the syntax required for the LOC and LENG
operands.
SAVE1 DATASAVE AREA=3, Places data in device save area 3.

LOC=C-5, Specifies data offset back from the cursor.
LENG=30 Specifies that 30 bytes of data be saved.

The example below illustrates the coding required to save a specific message and
to save data from a screen buffer.
NET4 NTWRK NETUSER=4000 Allocates network user area.
*
* Sample WSim Script
* This script illustrates the network definition and message generation
* statements required to save a specific message from a screen buffer.
*
DEV1 DEV USERAREA=200 Allocates a 200-byte device user area
* for DEV1.

.

. Network definition statements.

.

DECK8 MSGTXT
* Beginning of DECK8.

.

. Message generation statements.

.
SAVE1 DATASAVE AREA=3,

TEXT=(SAVE THIS), Specifies message to be saved in
(MESSAGE) device save area 3.

SAVE2 DATASAVE AREA=U+10, Specifies that 30 bytes of data,
LOC=C+0,LENG=30 beginning at the location of the

* cursor, be saved from the screen
* buffer into the device user area
* in a position offset 10 bytes
* from the beginning of the area.
SAVE3 DATASAVE AREA=1, Specifies that the text HOWDY be saved

TEXT=(HOWDY) at offset 0 in device save area 1.
SAVE4 DATASAVE AREA=N2, Specifies that 8 bytes of data from

LOC=B+NC2,LENG=8 an offset equal to the value of network
* index counter 2 in the device buffer

132 Creating Workload Simulator Scripts

* be saved in network save area 2.
SAVE5 DATASAVE AREA=N+DSEQ, Specifies that the text HELLO be saved

TEXT=(HELLO) in the network user area at an offset
* equal to the value of the device
* sequence counter.

.

. Message generation statements.

.
ENDTXT End of DECK8.

For additional information about coding the NETUSER, USERAREA, and
SAVEAREA network definition statements, see the WSim Script Guide and Reference.
For more information about the DATASAVE message generation statement, see
“DATASAVE” on page 196.

Manipulating Data in a Save or User Area with the DATASAVE
Statement
You can manipulate the data coded in the TEXT operand of the DATASAVE
statement with the B2X, BITAND, BITOR, BITXOR, CENTER, DELETE,
DELWORD, INSERT, LEFT, OVERLAY, REVERSE, RIGHT, SPACE, STRIP, STRIPL,
STRIPT, SUBWORD, TRANSLATE, X2B, and X2C functions.

To specify the function you want to perform, code the FUNCTION operand on the
DATASAVE statement. You may also specify the INSERT, POS, PLENG, PAD,
TABLEI, and TABLEO operands, depending on the function you want to perform.

The following example shows how to use the INSERT function.
DATASAVE AREA=1,

TEXT=(HAVE DAY) Stores "HAVE DAY" in save area 1.

DATASAVE AREA=2,
TEXT=($RECALL,1$), Specifies the target data into which

* it will be inserted.
FUNCTION=INSERT,
INSERT=(A NICE), Specifies the data to be inserted.
POS=5, Specifies the position in the TEXT

* data after which the INSERT data is
* to be inserted.

PLENG=7 Specifies the length to which the
* INSERT data is to be padded.
WTO ($RECALL,2$) Writes "HAVE A NICE DAY" to the console.

Note: The default pad character is a blank.

Converting data in a save or user area with the DATASAVE
statement
You can manipulate and convert DBCS or SBCS data coded in the TEXT operand
of the DATASAVE statement with the DBCSADD, DBCSADJ, DBCSDEL, DBCS2SB,
SB2DBCS, and SB2MDBCS functions.

To specify the function you want to perform, code the FUNCTION operand on the
DATASAVE statement.

In the following examples and discussion, the SO character is represented using a
“<”, the SI character is represented using a “>”, and the first byte of each DBCS
character, which is referred to as the ward byte, is represented using a “.”
character.

The following example shows how to use the function.

Chapter 13. Generating messages with the TEXT statement 133

DATASAVE FUNCTION=DBCSADD, Add SO/SI to TEXT=(..) data
TEXT=(’42C142C242C3’), ".A.B.C"
AREA=1 "<.A.B.C>"

DATASAVE FUNCTION=DBCSADJ, Delete SI/SO pairs from
TEXT=(..) data

TEXT=(’0E42C10F0E42C20F’), "<.A><.B>"
AREA=1 "<.A.B>"

DATASAVE FUNCTION=DBCSDEL, Delete SO/SI from TEXT=(..) data
TEXT=(0E42C142C20F’), "<.A.B>"
AREA=1 ".A.B."

DATASAVE FUNCTION=DBCS2SB, Convert DBCS ward 42 EBCDIC TEXT=(..)
to SBCS

TEXT=(’42C142C242C3’), ".A.B.C"
AREA=1 "ABC"

DATASAVE FUNCTION=DBCS2SB, Convert DBCS ward 42 EBCDIC TEXT=(..)
to SBCS

TEXT=(’0E42C442C50F’), "<.D.E>"
AREA=1 "DE"

DATASAVE FUNCTION=SB2DBCS, Convert TEXT=(..) to DBCS
TEXT=(ABC), "ABC"
AREA=1 ".A.B.C"

DATASAVE FUNCTION=SB2MDBCS, Convert TEXT=(..) to DBCS Mixed
TEXT=(ABC), "ABC"
AREA=1 "<.A.B.C>"

See “Simulating DBCS data entry for simulated 3270 DBCS terminals” on page 241
for more information about simulating 3270 DBCS terminals.

Inserting data into a message
After you store data in a save or user area, you can retrieve the data during
message generation. Then, you can insert the retrieved data into messages
generated for the system under test, helping to automate the message generation
process.

When you specify messages on the TEXT message generation statement, you can
retrieve stored data with the $RECALL$ data field option. The following list shows
the values that you can code on this data field option:

$RECALL,integer$
Retrieves all the data last saved in a device save area. The amount
retrieved is the same as the amount last saved. integer is an integer 1 - 4095
that specifies the number of the save area.

$RECALL,area,length$
Retrieves data from a network or device save or user area by specifying
the area where the data is stored and the length of data to be inserted into
the data stream. area is a location in a save or user area. length is an integer
1 - 32767 or the name of a valid counter. length is optional; it specifies the
amount of data to recall. If you do not code this value, WSim returns all of
the data following the offset.

When you code one of the following options for area, value for the N, U, Ns, and s
options is an integer 0 - 32766 or the name of a counter whose value is less than
the length of the save or user area. For the B, C, D, TH, RH, and RU options, value
is an integer 0 - 32766 or a counter specification whose value is within this range.

134 Creating Workload Simulator Scripts

N±value Specifies an offset into the network user area from the beginning of
the area (+value) or the end of the area (-value).

Ns+value Specifies offset value in a network save area. s is an integer 1 - 4095
that specifies the network save area.

s+value Specifies offset value in a device save area. s is an integer 1 - 4095.

U±value Specifies an offset into the device user area from the beginning of
the area (+value) or from the end of the area (-value).

B±value Specifies an offset into the device buffer from the beginning of the
buffer (+value) or from the end of the buffer (-value). For display
devices, +value specifies an offset from the beginning of the screen
image display buffer and -value specifies an offset from the end of
the screen image display buffer.

C±value Specifies an offset beyond the current cursor position for a display
device (+value) or before the current cursor position for a display
device (-value).

D+value Specifies an offset from the beginning of the data stream.

TH+value Specifies an offset from the beginning of the transmission header.

RH+value Specifies an offset from the beginning of the request/response
header.

RU+value Specifies an offset from the beginning of the request/response unit.

(row,col) Specifies the row and column of the screen image of the display
device.

The following example illustrates using the $RECALL$ data field option to retrieve
data from save and user areas:
DECK8 MSGTXT
* Beginning of DECK8.
MSG1 TEXT ($RECALL,N+0,7$) Retrieves data 7 bytes long from the
* beginning of the network user area (0
* offset).
MSG2 TEXT ($RECALL,2,35$) Retrieves data 35 bytes long from device
* save area 2.
MSG3 TEXT ($RECALL,N3$) Retrieves data from network save area 3.
MSG4 TEXT ($RECALL,2$) Retrieves data from device save area 2.
MSG4 TEXT ($RECALL,U+DC3,4$) Retrieves 4 bytes of data from the device
* user area starting at an offset equal to
* the value of device counter 3.
MSG5 TEXT ($RECALL,U+DC3$) Retrieves all data previously saved from
* the device user area starting at an offset
* equal to the value of device counter 3.
MSG6 TEXT ($RECALL,B+2$) Retrieves all data from the device buffer,
* starting at an offset of 2.
MSG7 TEXT ($RECALL,C-0,3$) Retrieves three bytes of data from the
* screen image display buffer, starting at
* the current cursor position.
MSG8 TEXT ($RECALL,D+4$) Retrieves all data from the data stream
* starting at an offset of 4.
MSG9 TEXT ($RECALL,(5,20),8$)
* Retrieves eight bytes of data from the
* screen image display buffer, starting at
* row 5, column 20.
MSG10 TEXT ($RECALL,TH+DC3$) Retrieves all data from the transmission
* header, starting at an offset specified in
* device counter 3 to the end of the message.
MSG11 TEXT ($RECALL,RH+0$) Retrieves all data in the request/response
* header until the end of the message.
MSG12 TEXT ($RECALL,RU+4,2$) Retrieves two bytes of data from the request
* unit, starting at an offset of 4.

.

Chapter 13. Generating messages with the TEXT statement 135

. Message generation statements.

.
ENDTXT End of DECK8

For the complete coding requirements for the RECALL data field option, see the
WSim Script Guide and Reference.

Summary of message generation with the TEXT statement
In WSim, you define messages for the system under test by coding the TEXT
message generation statement. With the TEXT statement, you can code messages
by entering data manually in the TEXT statement's data field or you can generate
messages dynamically with data field options. This chapter described entering data
manually and generating data dynamically in the following ways:

Random numbers
Code the $RNUM$ data field option to generate a random number and
insert the number into a message.

User tables
Code the $UTBL$ data field option to select an entry from a user table and
insert the entry into a message.

Sequence counters
Code data field options such as $NSEQ$, $LSEQ$, $TSEQ$, and $DSEQ$ to
place a sequence counter's value into a message.

Index counters
Code several options on the $UTBL$ data field option to select entries from
a user table and place the entry into a message.

User and save areas
Code the $RECALL$ data field option to retrieve data previously saved
and insert the data into a message.

For information about generating data dynamically with other data field options
that are available in WSim, see the WSim Script Guide and Reference. When you
create a message generation deck, use these data field options to simplify the
message generation process.

136 Creating Workload Simulator Scripts

Chapter 14. Understanding delimiters

In Chapter 13, “Generating messages with the TEXT statement,” on page 117, you
learned to generate messages with the TEXT message generation statement. To
send messages to the system under test, however, you must code delimiters in
your message generation deck. As discussed in Chapter 12, “Basic concepts,” on
page 107, delimiters are message generation statements that interrupt the message
generation process and send messages from the buffer to the system under test. To
use delimiters to perform these functions, you must understand how delimiters
affect the message generation process and how to code delimiters in a message
generation deck.

This chapter provides the following information about delimiters:
v How delimiters affect message generation
v Conditions required for message generation
v How delimiters are classified as unconditional delimiters, conditional delimiters,

and delimiters for specific types of devices
v Interrupting message generation with unconditional delimiters
v Sending messages with conditional delimiters
v Coding scripts with delimiters.

In addition to interrupting message generation with delimiters,WSim enables you
to delay message generation. You can use statements and operands to create an
intermessage delay, a period of time WSim delays between exiting message
generation after processing a delimiter and reentering message generation. For
more information about intermessage delays, see Chapter 15, “Understanding
intermessage delays,” on page 153.

How delimiters affect the message generation process
There are a number of message generation statements that act as delimiters. When
WSim processes a statement that serves as a delimiter, it takes the following
actions:
1. Interrupts message generation for the active device.
2. Sends any messages in the device buffer to the system under test.
3. Waits until a message is received, a specified amount of time elapses, or all

conditions for message generation have been satisfied for that device.
4. Continues to process the deck.

After WSim processes a delimiter, the following conditions must exist before the
device can reenter message generation:
v The WAIT, EVENT WAIT, and QUIESCE indicators must be turned off.

Note: The device can still enter message generation if end of chain has not been
sent even if the QUIESCE indicator is turned on.

v The device cannot be in the console recovery state. For more information about
console recovery and the F (Console Recovery) operator command, see WSim
User's Guide.

v The INPUT INHIBITED indicator for a display device must be turned off.

© Copyright IBM Corp. 1989, 2015 137

Note: WSim also maintains an INPUT INHIBITED indicator for 3270, 3643, 5250,
and LU2 display terminals. For more information about this indicator, see
“INPUT INHIBITED indicator” on page 220.

v An SNA logical unit must be in the correct SNA state for sending data.
v The intermessage delay must have expired. Intermessage delays simulate the

time an operator takes to enter data or to read data received from the system
under test, as discussed in Chapter 15, “Understanding intermessage delays,” on
page 153.

As mentioned in the preceding list, a device cannot reenter message generation
when a WAIT, EVENT WAIT, or QUIESCE indicator is on. An indicator is a flag
that registers whether WSim has processed a WAIT or QUIESCE statement. By
default, each indicator is off unless explicitly turned on by the associated message
generation statement.

You can use the indicators to prevent a device from entering message generation.
You may want to do this for the following reasons:
v You want to interrupt message generation until a certain event occurs.
v The system under test is not ready to receive additional messages.
v You want to simulate delays caused by slow operator response times so that you

can maintain accurate synchronization between terminal traffic and system
responses.

Note: If you code the SCAN operand on the NTWRK statement, WSim attempts to
recover inactive terminals automatically by turning the WAIT and EVENT WAIT
indicators off. With the SCAN operand, you specify the amount of time a resource
can remain inactive before WSim attempts recovery. To maintain the delays coded
in your message generation decks, do not code the SCAN operand for a shorter
period of time than your longest delay. If you do code the SCAN operand for a
shorter period of time,WSim attempts terminal recovery before the required delay
is complete. For more information about the coding required for automatic
terminal recovery, see Part 1, “Defining WSim networks,” on page 1.

For more information about how the WAIT, EVENT WAIT, and QUIESCE
indicators control message generation, see “Interrupting message generation with
unconditional delimiters” on page 139.

How delimiters are classified
Message generation statements that act as delimiters can be classified by the way
that they affect the message generation process:
v Unconditional delimiters
v Conditional delimiters
v Delimiters for specific types of devices
v CPI-C simulation statement delimiters.

An unconditional delimiter interrupts the message generation process and sends a
message in the buffer to the system under test. Unconditional delimiters interrupt
message generation regardless of whether a message exists in the buffer. See
“Interrupting message generation with unconditional delimiters” on page 139 for
more information about these delimiters.

A conditional delimiter interrupts the message generation process and sends the
message in the buffer to the system under test. Conditional delimiters interrupt
message generation only if a message has already been generated for the device or

138 Creating Workload Simulator Scripts

an attention identifier (AID) byte has been set. See “Sending messages with
conditional delimiters” on page 148 for more information about these delimiters.

Delimiters for specific types of devices interrupt the message generation process
and send messages in the buffer only when you simulate specific types of
resources. When the AID byte is set, these become delimiters. For detailed
information about these delimiters, see Chapter 18, “Generating messages for
specific types of devices,” on page 219.

CPI-C simulation statement delimiters cause WSim to relinquish control to VTAM.

The following summarizes the classification of message generation statements that
are delimiters.
v Unconditional Delimiters

STOP
WAIT
QUIESCE

v Conditional Delimiters

CMND
ENDTXT
TEXT

v Delimiters for Specific Types of Devices

BTAB
CHARSET
CLEAR
CLEARPTN
CMD1-24
COLOR
CTAB

CURSOR
CURSRSEL
DELETE
DUP
ENTER
EREOF
ERIN

FLDADV
FLDBKSP
FLDMINUS
FLDPLUS
FM
HELP
HIGHLITE

HOME
INSERT
JUMP
LCLEAR
NL
PA1-3
PF1-24

PRINT
ROLLDOWN
ROLLUP
SCROLL
SELECT
SEND
STRIPE

SYSREQ
TAB

v CPI-C Simulation Statements that are Delimiters1

CMALLC
CMCFM

CMCFMD
CMDEAL

CMFLUS
CMPTR

CMRCV2

CMRTS
CMSEND
CMSERR

The following sections describe how to code unconditional and conditional
delimiters to send messages and to interrupt the message generation process.

Interrupting message generation with unconditional delimiters
When WSim encounters an unconditional delimiter during message generation, it
stops processing the message generation deck and sends messages in the buffer to
the system under test. Depending on the delimiter, WSim might or might not
resume the message generation process automatically:

1. Only CPI-C statements that result in requests being issued to VTAM are delimiters. If the statement fails as a result of a local
error that is detected before issuing a request to VTAM, the statement will not act as a delimiter. The types of errors that are
typically detected as local errors are parameter checks and state checks.

2. The CMRCV statement will only be a delimiter if the receive type is receive-and-wait, and no data is available on the receive
queue. When this statement acts as a delimiter, message generation stops for the transaction program until either data or status is
received from the partner TP.

Chapter 14. Understanding delimiters 139

WAIT Simulates the action of a terminal operator waiting for a reply before
entering the next message. The WAIT statement interrupts message
generation until a specified amount of time elapses, a specified condition is
met, or a message is received from the system under test. If a message was
generated, the WAIT statement also causes WSim to send the message in the
buffer to the system under test.

STOP Enables you to end message generation for a device without setting any
indicators. The STOP statement interrupts message generation for a
particular deck until WSim can reenter message generation. If a message was
generated, the STOP statement also causes WSim to send the message in the
buffer to the system under test.

QUIESCE Simulates the action of an operator leaving the workstation unattended. The
QUIESCE statement interrupts message generation until the QUIESCE
indicator is turned off and all conditions for message generation were
satisfied. If a message was generated, the QUIESCE statement also causes
WSim to send the message in the buffer to the system under test.
Note: Once you start sending an SNA chain of messages, the QUIESCE
statement does not prevent reentry to message generation until an
end-of-chain message is generated.

The following sections describe each unconditional delimiter and provide examples
of the syntax required to code them in a message generation deck. “The WAIT
statement,” which follows this section, and “The QUIESCE statement” on page 147
also provide information about the WAIT, EVENT WAIT, and QUIESCE indicators.

The WAIT statement
The WAIT statement interrupts message generation for a device. You can use the
WAIT statement to cause a device to wait for a specified amount of time, until a
specified event occurs, until a specific message is received, or for some
combinations of conditions. A WAIT statement that does not specify an EVENT
sets the WAIT indicator. The device cannot reenter message generation until the
WAIT indicator is reset. For a complete list of the actions that reset the WAIT
indicator, see “Understanding the WAIT indicator” on page 144.

If you code a WAIT statement without an operand and with an IF statement logic
test, you can cause a device to wait until a specific message is received from the
system under test. When you code these statements together, the logic test specifies
the message; the WAIT statement interrupts message generation for that device
until the specified message is received. In this way, you can simulate an operator
waiting for a specific reply before entering the next message.

Note: If you code the WAIT statement without an operand and not with a logic
test, WSim interrupts message generation indefinitely. To reenter message
generation when this occurs, you may enter the F (Console Recovery) operator
command from the console.

For more information about logic tests, see Chapter 16, “Defining logic tests,” on
page 165. See WSim User's Guide for more information about the F operator
command.

To interrupt message generation until a specific event takes place or for a specified
amount of time, you can code one of the following operands on the WAIT
statement:
v EVENT=event

v TIME={integer| cntr}[,UTI=uti]

140 Creating Workload Simulator Scripts

When you code the EVENT operand, WSim interrupts message generation for a
device until a specified event occurs. By coding the TIME and UTI operands, you
can specify the maximum amount of time WSim interrupts message generation for
a device.

The following sections describe the coding required for each operand.

Coding the EVENT operand
To simulate an operator waiting for an event to take place on another terminal,
code the EVENT=event operand:
WAIT1 WAIT EVENT=GOAHEAD Turns on the WAIT EVENT indicator and interrupts
* processing until the event named GOAHEAD is posted.

If you specify the name of an event with the EVENT operand, that event must be
posted before WSim continues message generation. You can take one of the
following actions to post an event:
v Code POST=event on the EVENT message generation statement.
v Issue the A (Alter) operator command from the console using the POST=event

parameter.
v Code the THEN=POST(event) or ELSE=POST(event) operands on an IF statement

logic test.
v Code the THEN=POST(event) operand on an ON statement.

For more information about the EVENT statement, see Chapter 17, “Understanding
control statements,” on page 195. For more information about the A (Alter)
command, see WSim User's Guide. Chapter 16, “Defining logic tests,” on page 165
provides detailed information about posting events with a logic test.

The following example illustrates a WAIT statement that specifies the name of an
event and the coding required to post that event.
DECK1 MSGTXT
* Sample Message Generation Decks
* This example illustrates a WAIT statement and an EVENT statement
* coded to simulate one resource waiting for an event to be posted
* by a second simulated resource.
*
* Beginning of DECK1.

.

. Message generation statements.

.
WAIT5 WAIT EVENT=START Specifies that WSim interrupt message
* generation for this device until the event
* named START is posted.

.

. Message generation statements.

.
ENDTXT End of DECK1.

*
DECK2 MSGTXT
* Beginning of DECK2.

.

. Message generation statements.

.
EVENT8 EVENT POST=START Posts the event named START.

.

. Message generation statements.

.
ENDTXT End of DECK2.

Chapter 14. Understanding delimiters 141

After WSim processes WAIT5 in the preceding example, the first simulated
resource cannot resume message generation until the event named START is
posted by the second simulated resource.

Coding the TIME operand
To simulate a terminal operator waiting a specific amount of time for a reply to a
message, code TIME=integer or TIME=cntr on the WAIT message generation
statement. The value you code on the TIME operand specifies the amount of time,
in seconds, that WSim interrupts message generation for a device.

The time specified on the TIME operand is the maximum amount of time that
WSim interrupts message generation. If a message is received before the specified
time elapses, WSim continues message generation without waiting for the time to
elapse. When you code certain values on the TIME operand,WSim calculates the
amount of time by multiplying a number by the active user time interval (UTI).
For more information about the UTI, see Chapter 15, “Understanding intermessage
delays,” on page 153.

You can code one of the following values for the TIME operand:

integer Specifies a fixed number of seconds (this is never multiplied by
the UTI) to be the maximum amount of time WSim interrupts
message generation. integer is an integer 0 - 21474836.

A(integer) Specifies that WSim selects a value from the range of zero to
two times integer.WSim then multiplies the result by the active
UTI value to determine the intermessage delay. integer is an
integer 0 - 1073741823.

F(integer) Specifies that WSim fixes the amount of time at the value of
integer multiplied by the active user time interval. integer is an
integer from 0 to 2147483647. If you specify F0, WSim
processes the statement as if you had not coded the TIME
operand.

R(integer) Specifies that WSim selects a value randomly from the range
defined on an RN statement and multiplies the value by the
active user time interval. integer specifies the number of the RN
statement and is an integer 0 - 255.

R(integer1,integer2) Specifies that WSim selects a value randomly from the range
specified by integer1 and integer2 and multiplies the value by
the active UTI value. integer1 is an integer from 0 to
2147483646 and integer2 is an integer from 1 to 2147483647 or
counter specifications whose values are within this range.
integer1 must be less than integer2.

T(integer) Specifies that WSim selects a value randomly from the rate
table specified by a RATE statement and multiplies the value
by the active UTI value. integer specifies the name of the RATE
statement and is an integer 0 - 255. For more information about
using the RATE statement, see “Coding the DELAY operand”
on page 158.

cntr Specifies that WSim uses the value of a sequence or index
counter as the amount of time. The counter's value must be
within the range 0 to 2147483647. For any counter value, the
maximum amount of time to wait is the value multiplied by
the UTI value.

Note: You must code the parentheses for R(integer1,integer2) when you code the
TIME operand. All other parentheses are optional.

142 Creating Workload Simulator Scripts

When you code TIME=cntr, you can specify one of the following sequence or index
counters for cntr:

NSEQ References a network sequence counter.

LSEQ References a line sequence counter.

TSEQ References a terminal sequence counter.

DSEQ References a device sequence counter.

NCn References network index counter n.

LCn References line index counter n.

TCn References terminal index counter n.

DCn References device index counter n.

The following example illustrates coding for TIME=integer.
WAIT2 WAIT TIME=300 Turns on the WAIT indicator and interrupts
* processing for a maximum of 300 seconds
* or 5 minutes.

Coding the UTI and TIME operands
To interrupt message generation for a specific amount of time, you can also code
the UTI=uti operand and the TIME operand on a WAIT statement. The UTI
operand specifies the name of a UTI network definition statement. As discussed in
Chapter 15, “Understanding intermessage delays,” on page 153, the UTI statement
defines a user time interval, which is a scale factor in hundredths of seconds.
When WSim processes the WAIT statement, it multiplies the amount of time coded
on the TIME operand by the value coded on the specified UTI statement. If you do
not code the UTI operand, WSim uses the UTI that is active for the device to
calculate the delay.

The amount of time specified when you code the UTI and TIME operands is the
maximum amount of time that WSim interrupts message generation. If a message
is received before the specified time elapses, WSim continues message generation
without waiting for the time to elapse.

Note: It is invalid to code the UTI operand without the TIME operand. In
addition, it is invalid to code the UTI and TIME operands with the EVENT
operand. Coding these statements in either manner results in a syntax error.

The following example illustrates a script with the coding required when you code
the UTI operand:
NET1 NTWRK
* Sample WSim Script
* This example illustrates the coding for a UTI network definition
* statement and a WAIT message generation statement. The UTI operand
* references a user time interval specified on the UTI statement.
*
* Beginning of NET1.

.

. Network definition statements.

.
UTIA UTI 100 Specifies a delay of 1 second.

.

. Network definition statements.

.

DECK1 MSGTXT
* Beginning of DECK1.

.

. Message generation statements.

Chapter 14. Understanding delimiters 143

.
WAIT3 WAIT TIME=F100, Multiplies the value of TIME (100) by the

UTI=UTIA number of seconds represented by UTIA (1 second)
* and interrupts message generation for that number
* of seconds (100 seconds) or until a message
* is received.

.

. Message generation statements.

.
ENDTXT End of DECK1.

For more information about the UTI network definition statement, see “Coding the
UTI statement” on page 155.

Understanding the WAIT indicator
During message generation, WSim turns on the WAIT indicator when you code the
WAIT statement in one of the following ways:
v Without an operand
v With the TIME operand
v With the TIME and UTI operands.

You can also set the WAIT indicator by coding the following operands on the IF
and ON statements:
v THEN=WAIT or ELSE=WAIT on the IF statement
v THEN=WAIT on the ON statement.

For more information about coding the IF statement, see Chapter 16, “Defining
logic tests,” on page 165. See “ON” on page 212 for more information about the
ON statement.

A WAIT indicator that is turned on as a result of a WAIT statement coded without
an operand is usually reset by a logic test that is evaluating messages received
from the system under test. A WAIT indicator that is turned on as a result of a
WAIT statement associated with a TIME value is reset when the specified time
period elapses or a message is received from the system under test. If WSim
receives a message from the system under test before the specified delay expires,
WSim evaluates the message with any active logic tests and message generation
continues.

The following example illustrates how WSim processes a WAIT statement and
turns on the WAIT indicator.
MSG5 TEXT (PW1) Simulates an operator entering a password.
WAIT3 WAIT TIME=60 Sends MSG5 and interrupts processing for 60
* seconds or until a message is received from
* the system under test.

First, MSG5 is sent. After 60 seconds elapse or when a message is received,WSim
turns off the WAIT indicator and continues processing the deck.

If you want to restart message generation before the specified time elapses, enter
the F (Console Recovery) operator command to place the specified resource in the
console recovery mode. For more information about the F command, see WSim
User's Guide.

The following provides a complete list of the conditions under which WSim resets
the WAIT indicator:
v An S (Start) operator command is executed

144 Creating Workload Simulator Scripts

v BIND is received (SNA LUs)
v An IF statement THEN= or ELSE=CONT (continue), B (branch), C (call),

RETURN, QUIESCE, or RELEASE action is taken
v An ON statement THEN=CONT (continue), B (branch), C (call), RETURN,

QUIESCE, or RELEASE action is taken
v The time coded on a WAIT statement's TIME operand expires
v A message is received after a WAIT TIME=nn statement is processed
v Automatic terminal recovery
v Console recovery mode is entered
v A console recovery subcommand is entered.

Preserving the WAIT indicator over asynchronous IF statements
During a simulation, the following situation sometimes occurs:
1. You want to check for a specific response to each message that you transmit
2. You receive some special sequences that require you to interrupt your normal

flow to send a special key (such as to clear the screen)
3. After sending the special key, you want to continue waiting if you do not

receive your expected response or to proceed to the next message to be
transmitted if you do.

This can occur, for example, when you simulate a VM/CMS session and you
receive “MORE”, “HOLDING”, or “VM READ” at some point, but you do not
want to proceed until you receive a specific response. This can also occur when
you simulate a TSO session, where “***” indicates that you need to clear the screen
before proceeding.

The following example, although limited, shows how to avoid this problem. You
can extend this example to handle cases where you want to check for responses on
only some transmissions or where you want to check specific locations for each
response. While these are more complicated and may require moving some
network level IF statements into message decks, the general technique still applies.

This specific example checks for the VM “MORE...” or “HOLDING” sequence for a
24x80 3270 display and sends PA2 to clear the screen when this is received. It also
checks for “VM READ” and sends ENTER in this case.WSim does not transmit the
next regular message, however, until the data specified by the RESP operand for
the previous message appears somewhere on the screen.
TESTNET NTWRK MSGTRACE=YES
* Switch 1 - on = waiting for response; off = response received
* Switch 2 - on = sending special sequence; off = sending normal text
* Note: You may want to use the SCAN operand on the NTWRK to handle
* the situation where you never receive the expected response.

.

.

.
* network IFs

IF WHEN=OUT,LOC=SW2,THEN=SW2(OFF),ELSE=SW1(ON)
IF WHEN=OUT,LOC=SW1,THEN=WAIT
IF WHEN=IN,LOC=B+0,TEXT=RESP,SCAN=YES,THEN=SW1(OFF)
IF WHEN=IN,LOC=(24,61),TEXT=(MORE...),THEN=CSENDKEYS-PA2
IF WHEN=IN,LOC=(24,61),TEXT=(HOLDING),THEN=CSENDKEYS-PA2
IF WHEN=IN,LOC=(24,61),TEXT=(VM READ),THEN=CSENDKEYS-ENTER
IF WHEN=IN,LOC=SW1,ELSE=CONT
.
.
.

Chapter 14. Understanding delimiters 145

SENDDATA MSGTXT
TEXT (data1),RESP=(respdata1)
ENTER
TEXT (data2),RESP=(respdata2)
ENTER
TEXT (),RESP=(respdata3)
PF10
.
.
.
ENDTXT

SENDKEYS MSGTXT
* This example depends upon the fact that no TEXT statements are
* used in these special sequences, since this would reset the RESP
* data. If TEXT statements were required here, the data would have
* to be put in a save area via a DATASAVE following each message in
* the primary message deck and the network IFs adjusted accordingly.
ENTER ENTER

SETSW SW2=ON
RETURN

PA2 PA2
SETSW SW2=ON
RETURN
ENDTXT

Understanding the EVENT WAIT indicator
When you specify the EVENT operand on the WAIT statement, WSim turns on the
EVENT WAIT indicator and interrupts message generation until a specific event
occurs (that is, until the event is posted). Like the WAIT indicator, with the EVENT
WAIT indicator, you can simulate an operator waiting for a specific reply from the
system under test or for an event to take place at another terminal. In addition,
WSim may also turn the EVENT WAIT indicator on as a result of a logic test
initiated through an IF message generation statement.

To turn off the EVENT WAIT indicator, you can post an event with the POST
operand on the EVENT message generation statement. In the following example,
the EVENT WAIT indicator is turned on for a simulated resource; however, as
WSim processes a different message generation deck for another resource, that
other resource posts the event.
DECK1 MSGTXT
* Sample Message Generation Decks
* These decks illustrate the coding required to simulate one
* resource waiting for an event to be posted by another resource.
*
* Beginning of DECK1.
MSG1 TEXT (PW8) Places the password into the buffer.
WAIT1 WAIT EVENT=GOAHEAD Interrupts processing until event GOAHEAD
* is posted, turns on the EVENT WAIT indicator,
* and sends MSG1.

.

. Message generation statements.

.
ENDTXT Specifies end of DECK1.

*
DECK2 MSGTXT
* Beginning of DECK2.
MSG1 TEXT (USER5) Places the user ID into buffer.
EVENT1 EVENT POST=GOAHEAD Posts event GOAHEAD.

.

. Message generation statements.

.
ENDTXT End of DECK2.

146 Creating Workload Simulator Scripts

When WSim processes DECK1 again, event GOAHEAD is already posted. Because
the EVENT WAIT indicator was turned off when GOAHEAD was posted,WSim is
able to continue processing the rest of DECK1.

As discussed in “Coding the EVENT operand” on page 141, you can also post an
event with the A (Alter) command or an IF statement logic test. If you want to
restart message generation before the event is posted, you can enter one of the
following operator commands at the console:

A (Alter) Specifies the name of an event for WSim to post when you specify
POST=event.

F (Console Recovery) Places the specified resource in the console recovery mode.

For more information about restarting message generation with operator
commands, see WSim User's Guide.

The STOP statement
To stop message generation for a device and send any messages that are currently
in the device buffer, code the STOP message generation statement. When WSim
processes this statement, it stops message generation for the active device.

The STOP statement has no associated operands. The following example shows
how this operand is coded.
STOP1 STOP Stops message generation for a particular device.

As shown in the following example, WSim stops message generation and sends the
message in the buffer, if any, when it encounters a STOP statement.
DECK1 MSGTXT
* Beginning of DECK1.
MSGA TEXT (CHANGE) Places CHANGE into buffer.
STOP1 STOP Sends MSG3 and stops message generation for the
* device.

ENDTXT End of DECK1.

When WSim processes the STOP statement in DECK1, message generation for that
device stops and the message CHANGE is sent to the system under test. The STOP
statement stops message generation for the active device for this pass through
message generation.

The QUIESCE statement
To simulate a device that is logged on but unattended by its operator, code the
QUIESCE message generation statement. When WSim processes a QUIESCE
statement, message generation stops only for the active device.

Note: Once you start sending an SNA chain of messages, the QUIESCE statement
does not prevent reentry of message generation until an end-of-chain message is
generated.

The following example illustrates how to code the QUIESCE statement:
QUIESCE5 QUIESCE Turns on the QUIESCE indicator and stops message
* generation for a particular resource.

In the following example, the QUIESCE statement sends the message in the buffer
and ends message generation:

Chapter 14. Understanding delimiters 147

MSG1 TEXT (PART NO. 1549) Places PART NO. 1549 into buffer.
QUIESCE Stops message generation for the device,

* prevents further message generation for
* the device, and sends MSG1.

After WSim processes the QUIESCE statement and turns on the QUIESCE
indicator, the simulated resource can receive messages from the system under test
and can evaluate messages received for any active logic tests. However, the
resource cannot generate additional messages until the QUIESCE indicator is reset.
While the QUIESCE indicator is on, the simulated resource responds negatively to
polling from the system under test and does not generate any messages. To poll a
device, the system under test sends a set of characters to a terminal. By responding
to these characters, the terminal indicates whether it has a message to send.

WSim can also turn on the QUIESCE indicator as a result of an IF statement logic
test or when you issue the QUIESCE operand on the A (Alter) operator command.
To turn off the QUIESCE indicator, you can take one of the following actions:
v Issue the A (Alter) operator command with the RELEASE operand.
v Issue an R (Reset) operator command.
v Code THEN=RELEASE or ELSE=RELEASE on a logic test.

Note: For TCP/IP client simulations, the QUIESCE indicator prevents the device
from automatically reconnecting.

To learn more about the IF statement, see Chapter 16, “Defining logic tests,” on
page 165. For more information about issuing operator commands at the console,
see WSim User's Guide.

Sending messages with conditional delimiters
When WSim processes a conditional delimiter after a message was generated or an
AID byte was set, it interrupts message generation and sends the message in the
buffer. When all conditions for message generation were satisfied, the device
reenters message generation, and WSim continues processing the message
generation deck. In contrast to unconditional delimiters, conditional delimiters act
as delimiters only when a message exists in the buffer.

The following statements act as conditional delimiters:

TEXT Interrupts message generation and sends the message in the buffer to the
system under test. When the device reenters message generation,WSim
places a new message into the buffer.

CMND Interrupts message generation and sends the message in the buffer to the
system under test. When the device reenters message generation,WSim
places an SNA command into the buffer. The CMND statement is valid
during SNA simulations only.

ENDTXT Interrupts message generation, sends the message in the buffer to the
system under test, and ends message generation for a particular device.

Note: If a message is generated by a TEXT statement and the cursor is moved
with a cursor movement statement such as TAB, the next TEXT statement
encountered by WSim does not act as a delimiter. Also, coding MORE=YES on the
previous TEXT statement causes the current TEXT statement not to act as a
delimiter.

148 Creating Workload Simulator Scripts

As shown in the following example, a TEXT statement generates a message in the
buffer at the current cursor location.
DECK1 MSGTXT
* Beginning of DECK1.
MSG1 TEXT ($DATE$) Places the current date into the buffer.

ENDTXT End of DECK1.

To send the message from the buffer to the system under test, you must code a
delimiter. However, as discussed in “How delimiters are classified” on page 138,
the preceding example already contains a conditional delimiter, the ENDTXT
statement. When WSim processes MSG1, it places the current date into the buffer.
Then WSim processes the ENDTXT statement, which indicates that WSim has
reached the end of DECK1. Message generation is stopped at the ENDTXT
statement, and MSG1 is sent to the system under test.

When you create message generation decks that are more complex than DECK1, do
not use the ENDTXT statement as the only delimiter in the deck. If you code a
deck with the ENDTXT statement as the only delimiter,WSim can enter an infinite
processing loop within the message generation deck. Instead, you can use a second
TEXT statement to send the message generated by the first TEXT statement. As a
conditional delimiter, the second TEXT statement sends the message generated by
the preceding TEXT statement.

The following example illustrates a series of TEXT statements serving as
conditional delimiters:
DECK1 MSGTXT
* Beginning of DECK1.
MSG1 TEXT ($DATE$) Places the current date into the buffer.
MSG2 TEXT (PW3) Sends the current date to the system under test and
* ends this pass though message generation. When
* WSim reenters message generation, it places PW3
* into the buffer.
MSG3 TEXT (USER3) Sends PW3 to the system under test and ends this
* pass through message generation. When WSim
* reenters message generation, it places USER3
* into the buffer.

ENDTXT Sends USER3 to the system under test and specifies
* the end of DECK1.

Steps:
1. In the preceding example, WSim places MSG1 into the buffer and continues to

process the message generation deck. When WSim processes MSG2, however,
MSG2 acts as a delimiter and interrupts message generation. This pass through
message generation ends, and WSim sends MSG1 to the system under test.

2. When all conditions for message generation were met, the device reenters
message generation.WSim then places MSG2 into the buffer. For a list of
conditions required for message generation, see “How delimiters affect the
message generation process” on page 137.

3. In turn, MSG3 interrupts message generation until all required conditions were
met. This pass through message generation ends, and WSim sends MSG2 to the
system under test. When the device enters message generation again, WSim
places MSG3 into the buffer.

4. Because MSG3 is in the buffer when WSim processes the ENDTXT statement,
the ENDTXT statement serves as a delimiter.WSim stops message generation
for DECK1 and sends MSG3 to the system under test.

Chapter 14. Understanding delimiters 149

Coding a script with delimiters
The following example illustrates how delimiters interact during message
generation. In this example, a script provides two message generation decks
named DECK1 and DECK2. DECK1 combines a TEXT, WAIT, and QUIESCE
statement to simulate an operator logging on to a terminal and leaving the
terminal unattended. DECK2 combines a TEXT, EVENT, and a STOP statement to
illustrate another operator logging on to a different terminal. The EVENT
statement turns off the EVENT WAIT indicator for DECK1.
NET1 NTWRK UTI=100
* Sample WSim Script
* This example illustrates a network definition and message generation decks
* that simulate two operators logging on from two different terminals.
*
* Beginning of NET1.

.

. Network definition statements.

.
UTI1 UTI 10 Specifies a user time interval of 0.1 second.

.

. Network definition statements.

.
*

DECK1 MSGTXT
* Beginning of DECK1, associated with
* simulated resource 1.
MSG1 TEXT (LOGON XY) Places LOGON XY into buffer.
WAIT1 WAIT EVENT=LOGONOK Sends MSG1 and interrupts message generation
* until event LOGONOK is posted.
QUI1 QUIESCE Quiesces simulated resource and stops message
* generation for DECK1.

ENDTXT End of DECK1.
*

DECK2 MSGTXT
* Beginning of DECK2.
MSGA TEXT (LOGON XY) Places LOGON XY into buffer.
EVT1 EVENT POST=LOGONOK Posts LOGONOK.
STOP1 STOP Stops message generation and sends MSGA.
MSGB TEXT (HI) Places message HI into buffer.

ENDTXT Sends MSGB and specifies end of deck.

WSim processes DECK1 and DECK2 as follows:

Steps:
1. WSim processes DECK1, placing “LOGON XY” into the buffer. Then WSim

processes WAIT1, which interrupts message generation for device 1 and sends
MSG1 to the system under test. Device 1 cannot reenter message generation
until event LOGONOK is posted.

2. WSim begins processing DECK2 (for a different device, device 2), placing
“LOGON XY” into the buffer. Then WSim posts event LOGONOK and
processes STOP1. STOP1 ends message generation for device 2 and sends
MSGA to the system under test.

3. Because event LOGONOK has now been posted, device 1 is able to reenter
message generation.WSim processes the QUIESCE statement, which interrupts
message generation. At this point, device 1 receives messages from the system
under test but cannot generate messages in return. To the system under test,
this resource appears to be unattended by its operator.

4. When the second simulated resource is able to reenter message generation,
WSim processes MSGB.

150 Creating Workload Simulator Scripts

Coding delimiters in your message generation decks enables you to create complex
simulations and interactions between resources. The next chapter, Chapter 15,
“Understanding intermessage delays,” on page 153, describes additional methods
of delaying message generation that enable you to simulate operator think time
and the time required to enter data.

Chapter 14. Understanding delimiters 151

152 Creating Workload Simulator Scripts

Chapter 15. Understanding intermessage delays

As discussed in Chapter 14, “Understanding delimiters,” on page 137, you must
code delimiters in your message generation deck to interrupt message generation,
send messages to the system under test, and simulate interaction between
simulated resources. In addition, you can simulate the operator think time and the
time required to enter data by coding an intermessage delay. An intermessage
delay is a period that WSim waits or delays after it exits message generation and
before it reenters message generation.

When you code intermessage delays in your message generation decks, you can
simulate operator think time and data entry time. For example, when WSim
encounters a delimiter, it exits message generation for that device. When all
conditions for message generation are satisfied, that device reenters message
generation, and WSim continues processing the message generation deck.
However, if you code an intermessage delay, WSim delays a specified amount of
time before reentering message generation.

This chapter discusses the statements and operands you can use to specify an
intermessage delay and provides information about the following topics:
v Specifying an intermessage delay
v Determining the start of an intermessage delay
v Specifying multiple user time intervals
v Altering user time intervals with the A (Alter) operator command
v Specifying delay values for individual resources
v Specifying intermessage delays for individual messages
v Coding a WSim script with intermessage delays.

Specifying an intermessage delay
WSim calculates an intermessage delay based on the following values that you
code on network definition statements and on message generation statements:
v User time interval (UTI)
v Delay value.

A user time interval (UTI) is a scale factor in hundredths of seconds that can apply
to an entire network, to individual network resources, or to an individual message.
For example, if you code UTI=50, the user time interval is equal to 0.5 seconds (50
X 0.01 second).

In WSim, you can specify a user time interval on several different network
definition and message generation statements. For example, you can specify a user
time interval for an entire network by coding the UTI operand on the NTWRK
statement:
NET1 NTWRK UTI=integer Syntax for the UTI operand.

WSim uses this user time interval to calculate the intermessage delay for every
resource on the simulated network unless it is overridden by an individual UTI.

Note: If you specify UTI=0, WSim reenters message generation without calculating
an intermessage delay.

© Copyright IBM Corp. 1989, 2015 153

With WSim, you can specify different user time intervals with the following
network definition and message generation statements:
v UTI operand on the NTWRK definition statement
v UTI network definition statement
v IUTI operand on the DEV, LU, and TP network definition statements
v SETUTI message generation statement.

To create an intermessage delay, you also specify a delay value, an integer that you
can assign to each resource in a network or to each message. The integers that you
assign enable you to create individual intermessage delays. If you do not specify a
delay value, WSim uses a fixed default delay value of 1.

You can specify a delay value on the following network definition and message
generation statements:
v DELAY operand on such statements as the DEV, LU, and TPnetwork definition

statements. For a complete list of the network definition statements on which
you can code the DELAY operand, see the WSim Script Guide and Reference.

v DELAY message generation statement.

WSim calculates an intermessage delay by multiplying the user time interval by
the delay value. For example, if the active UTI for the device is 10 with a delay
value of 20, WSim determines the intermessage delay using the following
calculations:
1. WSim calculates the user time interval as 0.1 seconds (10 X 0.01 seconds).
2. WSim multiplies the user time interval by the delay value (0.1 seconds X 20) to

calculate the intermessage delay, which is 2 seconds.

When WSim exits message generation, it waits for this 2-second intermessage
delay to expire before reentering message generation.

The following table shows how WSim determines an intermessage delay using
different user time intervals and delay values.

Table 9. How user time intervals relate to intermessage delays

Active UTI Value User Time Interval Delay Value Intermessage Delay

UTI=1 0.01 seconds 100 1.0 second

UTI=10 0.1 seconds 5 0.5 second

UTI=100 1 second 20 20 seconds

UTI=1000 10 seconds 10 100 seconds

When you specify an intermessage delay, you can also specify when WSim starts
calculating the delay. The following section describes how you specify the start of
an intermessage delay with the THKTIME operand.

Determining the start of an intermessage delay with the THKTIME
operand

With WSim, you determine the start of an intermessage delay by coding the
THKTIME operand on statements such as the DEV and LU (VTAMAPPL) network
definition statements. For a complete list of the network definition statements on
which you can code the THKTIME operand, see the WSim Script Guide and
Reference.

154 Creating Workload Simulator Scripts

When you code this operand, you specify whether WSim starts to calculate the
intermessage delay immediately or after all conditions for entering message
generation have been satisfied.

To determine when WSim starts an intermessage delay, code one of the following
values on the THKTIME operand:

IMMED WSim calculates the intermessage delay immediately upon exiting
message generation, even if the resource is not ready to generate another
message. For example, WSim begins the delay for a resource even if a
WAIT indicator remains on.

UNLOCK WSim does not begin the intermessage delay until all conditions for
message generation were satisfied and the terminal is ready to generate a
message. When you simulate a 3270 display terminal, for example, the
delay does not begin until all SNA responses were received, the terminal
WAIT indicator is off, and the keyboard is unlocked.

Notes:

v IMMED is the default value for the THKTIME operand.
v When you code a WAIT statement with the TIME operand, it replaces the

normal intermessage delay.

The following example shows how to code the THKTIME operand:
NET2 NTWRK
* Beginning of NET2.
DEV5 THKTIME=UNLOCK Starts intermessage delays for DEV5 when the
* keyboard is unlocked.
DEV6 THKTIME=IMMED Starts intermessage delays for DEV6 immediately
* upon exiting message generation.

.

. Network definition statements.

.

For more information about coding the THKTIME operand when you simulate
SNA devices, see Chapter 18, “Generating messages for specific types of devices,”
on page 219.

Specifying multiple user time intervals
When you code the UTI network definition statement, you can define multiple
user time intervals for individual resources and messages. The following sections
describe how to define multiple user time intervals with the UTI statement and
how to reference the intervals from the network definition or from a message
generation deck.

Coding the UTI statement
To define multiple user time intervals, code multiple UTI network definition
statements as shown in the following example:
UTI1 UTI 100 Defines 1 second user time interval.
UTI2 UTI 50 Defines 0.5 second user time interval.
UTIA UTI 1000 Defines 10 second user time interval.

You can code any number of UTI statements. By coding several statements, you
can specify many different user time intervals and create many different
intermessage delays. In this way, you can simulate devices operating at different
speeds and change intermessage delays for individual messages.

Chapter 15. Understanding intermessage delays 155

Referencing multiple user time intervals
After you code network UTI statements, you can reference the individual user time
intervals with one of the following operands:
v The IUTI operand on such statements as the SSCP, CNTLR, TERM, DEV, TP, and

LU network definition statements
v The UTI operand on the WAIT, DELAY, and SETUTI message generation

statements.

For a complete list of the statements on which these operands can be coded, see
the WSim Script Guide and Reference.

The following sections describe how to code the IUTI operand and the SETUTI
message generation statement to reference individual user time intervals. For more
information about the DELAY message generation statement, see “Specifying
intermessage delays for individual messages” on page 159. See Chapter 16,
“Defining logic tests,” on page 165 to learn about the UTI operand on the WAIT
message generation statement.

Coding the IUTI operand
The IUTI operand specifies the name of a UTI network definition statement. The
user time interval defined on the named UTI statement then becomes the
individual user time interval for this device, overriding coding on the NTWRK
statement.

The following example shows the coding required for this operand.
NET1 NTWRK
* Beginning of NET1.

.

. Network definition statements.

.
UTI1 UTI 100 Defines UTI1.
UTI2 UTI 50 Defines UTI2.
UTI3 UTI 10 Defines UTI3.

.

. Network definition statements.

.
DEV1 DEV IUTI=UTI3 Specifies that WSim use the user time interval
* defined by UTI3 as the active user time interval
* for DEV1.

Coding the SETUTI statement
The UTI operand on the SETUTI message generation statement also references a
UTI statement and changes the active user time interval for a simulated resource.
The UTI operand value can be set to “NTWRKUTI”, which references the
network-level UTI. However, the user time interval specified by the SETUTI
statement remains active only until WSim processes another SETUTI statement or
the current deck's ENDTXT statement.

The following example illustrates changing the intermessage delay specified on the
network definition with the SETUTI statement.
NET8 NTWRK UTI=10
* Sample WSim Script
* This script illustrates the coding required to change the intermessage
* delay with the SETUTI statement.
*
* Beginning of NET8; defines a user time
* interval for all resources on NET8.

.

. Network definition statements.

156 Creating Workload Simulator Scripts

.
UTI1 UTI 500 Specifies a user time interval for UTI1.
UTI2 UTI 1000 Specifies a user time interval for UTI2.

.

. Network definition statements.

.
DEV1 DEV IUTI=UTI1 Specifies a user time interval equal to the value
* of UTI1 for DEV1.

.

. Network definition statements.

.

DECK1 MSGTXT
* Beginning of DECK1 for DEV1.
MSG1 TEXT (PW1) Places PW1 into buffer.
SETUTI1 SETUTI UTI=UTI2 Specifies new user time interval for DEV1.
MSG2 TEXT (USER1) Interrupts message generation and sends MSG1.
* When DEV1 reenters message generation, WSim
* places USER1 into buffer and calculates the
* intermessage delay.

.

. Message generation statements.

.
ENDTXT End of DECK1.

When WSim processes DECK1, SETUTI1 defines a new user time interval for
DEV1. This statement changes the user time interval to the value of UTI2, which is
1000 or 10 seconds, overriding the active user time interval specified by the DEV
network definition statement named DEV1. WSim continues to use this value to
calculate intermessage delays for DEV1 until it processes another SETUTI
statement or reaches an ENDTXT statement.

Altering user time intervals with the A (Alter) operator command
You can change the value of a user time interval with the A (Alter) operator
command. When you enter this command from the console, you specify the
applicable network or resource and one of the following operands:

IUTI=utiname
Specifies that WSim change the individual UTI for the specified resource to
the value of utiname.

U=integer
Specifies that WSim change the UTI specified on the NTWRK statement to
an integer 0 - 65535.

UTI=(utiname,integer)
Specifies that WSim change the user time interval represented by utiname
to an integer 0 - 65535.

In the following example, you code a user time interval of 100 on the NTWRK
statement:
NET4 NTWRK UTI=100 Specifies the user time interval for intermessage
* delays.

To alter the UTI specified in the preceding example, you can enter the A (Alter)
operator command from the console, as follows:
A NET4,U=10

WSim then changes the UTI specified on the NTWRK statement from a value of
100 to a value of 10.

Chapter 15. Understanding intermessage delays 157

For more information about the A (Alter) operator command, see WSim User's
Guide.

Specifying delay values for individual resources
In WSim, you can define specific delay values that WSim uses to calculate
intermessage delays. With the DELAY operand, you can specify delay values for
individual resources.

For a complete list of the statements on which these operands can be coded, see
the WSim Script Guide and Reference. The following sections describe how to code
the DELAY operand.

Coding the DELAY operand
The DELAY operand enables you to change intermessage delays by coding
different delay values for individual resources. When you code one of the
following values on the DELAY operand, you can specify a delay value manually,
generate a delay value randomly, or select a delay value from a rate table.

A(integer) Specifies that WSim selects a delay value from the range of zero to
two times integer. integer is an integer 0 - 1073741823.

F(integer) Specifies that WSim uses a fixed delay value of integer. integer is an
integer 0 - 2147483647.

R(integer) Specifies that WSim selects a delay value randomly from the range
defined on an RN statement. integer specifies the number of the RN
statement and is an integer 0 - 255.

R(integer1,integer2) Specifies that WSim selects a delay value randomly from the range
specified by integer1 and integer2. integer1 is an integer 0 -
2147483646 and integer2 is an integer 1 - 2147483647 or counter
specifications whose values are within these ranges. The value for
integer1 must be less than the value for integer2.

T(integer) Specifies that WSim selects a delay value randomly from the rate
table specified by a RATE statement. integer specifies the number of
the RATE statement and is an integer 0 - 255.

Notes:

v Each delay value specified by the DELAY operand must be multiplied by the
active UTI to determine the intermessage delay.

v You must code the parentheses for R(integer1,integer2) when you code the
DELAY operand. All other parentheses are optional.

v If you do not code the DELAY operand, the default delay value is F1. WSim
then multiplies the default value by the active user time interval to calculate the
intermessage delay.

If you specify an intermessage delay based on a rate table value with T(integer),
you must define the table with a RATE network definition statement.
integer RATE member Syntax for the RATE statement.

member specifies a rate table member in the partitioned data set defined by the
RATEDD data set referenced in the JCL used when you run WSim. integer specifies
a number that enables you to reference this statement. For more information about

158 Creating Workload Simulator Scripts

the RATE statement, see the WSim Script Guide and Reference. For more information
about the RATEDD data set used to run WSim, see Part 1, “Defining WSim
networks,” on page 1.

The following example shows how to code the DELAY operand to specify a
randomly selected delay value:
DEV1 DEV DELAY=R(5,50) Selects a delay value randomly from the
* range 5 to 50.

Each time WSim calculates a delay for DEV1, it selects a random number between
5 and 50 and multiplies that number by the active user time interval. For example,
when the active UTI is 1000, the active user time interval is equal to 10 seconds. If
WSim generates a random number 12 when calculating the delay, the new
intermessage delay for DEV1 is equal to 12 times 10 seconds or 120 seconds.

Note: A different intermessage delay may be generated each time WSim calculates
a delay for DEV1.

For detailed coding information about the DELAY operand, see the WSim Script
Guide and Reference.

Specifying intermessage delays for individual messages
When you code the following operands on the DELAY message generation
statement, you can change the intermessage delay for an individual message:
v UTI=uti

v TIME=integer│cntr.

The UTI operand overrides the active user time interval for a simulated resource
by specifying the name of a UTI network definition statement. The user time
interval defined by the named UTI statement temporarily becomes the device's
active user time interval for that message. WSim calculates the intermessage delay
by multiplying this user time interval by the value specified on the TIME operand.

Note: The UTI operand on the DELAY statement is valid only if you also code the
TIME operand.

When you code the DELAY statement with the UTI and the TIME operands, WSim
calculates a new intermessage delay that takes effect only the next time the device
exits from message generation. For example, when WSim sends the first message
following a DELAY statement, it calculates the intermessage delay defined by that
DELAY statement. After WSim reenters message generation, the previously
specified user time interval and delay value are again active.

You can code the following values for the TIME operand:

integer Specifies a fixed value that WSim uses as the delay value. integer is
an integer 0 - 2147483647.

A(integer) Specifies that WSim selects a delay value from the range of zero to
two times integer. integer is an integer 0 - 1073741823. integer is the
average of the delay values selected by WSim.

F(integer) Specifies that WSim fixes the delay value at the value of integer.
integer is an integer 0 - 2147483647.

Chapter 15. Understanding intermessage delays 159

R(integer) Specifies that WSim selects a delay value randomly from the range
defined on an RN statement. integer specifies the number of the RN
statement and is an integer 0 - 255.

R(integer1,integer2) Specifies that WSim selects a delay value randomly from the range
specified by integer1 and integer2. integer1 is an integer 0 - 2147483646
and integer2 is an integer 1 - 2147483647 or counter specifications
whose values are within these ranges. The value for integer1 must be
less than the value for integer2.

T(integer) Specifies that WSim selects a delay value randomly from the rate
table specified by a RATE statement. integer specifies the number of
the RATE statement and is an integer 0 - 255. For more information
about the RATE statement, see “Coding the DELAY operand” on
page 158.

cntr Specifies that WSim use the value of a sequence or index counter as
the delay value.

Notes:

v WSim multiplies the delay value specified by the TIME operand by the active
UTI to determine the intermessage delay.

v You must code the parentheses for R(integer1,integer2) when you code the TIME
operand. All other parentheses are optional.

When you code TIME=cntr, you can specify one of the following sequence or index
counters for cntr:

NSEQ References a network sequence counter.

LSEQ References a line sequence counter.

TSEQ References a terminal sequence counter.

DSEQ References a device sequence counter.

NCn References network index counter n.

LCn References line index counter n.

TCn References terminal index counter n.

DCn References device index counter n.

The following example illustrates the coding required to reference a user time
interval defined on a UTI statement and calculate an intermessage delay for an
individual message.
NET8 NTWRK UTI=10
* Sample WSim Script
* This script illustrates the coding required to change an intermessage
* delay with the DELAY message generation statement.
*
* Beginning of NET8; defines a user time
* interval for all resources on NET8.

.

. Network definition statements.

.
UTI1 UTI 500 Specifies a user time interval for UTI1.
UTI2 UTI 1000 Specifies a user time interval for UTI2.

.

. Network definition statements.

.
DEV1 DEV IUTI=UTI1 Specifies a user time interval equal to the

160 Creating Workload Simulator Scripts

* value of UTI1 for DEV1.
.
. Network definition statements.
.

DECK1 MSGTXT
* Beginning of DECK1 for DEV1.
MSG1 TEXT (PW25) Places PW25 into buffer.
DELAY1 DELAY UTI=UTI2, Specifies intermessage delay of 300 seconds (5

TIME=F(30) minutes) to take place after WSim sends MSG1.
MSG2 TEXT (USER25) Interrupts message generation and sends MSG1.
* Before DEV1 reenters message generation, the
* delay calculated for DELAY1 must expire. When
* DEV1 reenters message generation, WSim places
* USER25 into the buffer.

.

. Message generation statements.

.
ENDTXT End of DECK1.

In the preceding example, the NTWRK statement and the UTI statements named
UTI1 and UTI2 define user time intervals. The IUTI operand on the DEV statement
named DEV1 specifies that the active user time interval for DEV1 is the same as
the user time interval specified by UTI1. Because the DELAY operand is not coded
on the DEV statement, the default delay value F1 is the active delay value for
DEV1.

When you code DECK1 for device 1, you want to change the intermessage delay
following MSG1. To override the active user time interval specified on the DEV
statement and the default delay value, code the DELAY message generation
statement named DELAY1. This statement specifies that WSim use the user time
interval specified by UTI2 (10 seconds) and a fixed delay value of 30 to calculate
the total intermessage delay, resulting in a delay of 300 seconds or 5 minutes.

When WSim processes MSG2, it interrupts message generation and uses DELAY1
as the intermessage delay. After the delay expires and all conditions for message
generation were satisfied, DEV1 reenters message generation. WSim then continues
processing the deck using the user time interval specified by the DEV statement
and the default delay value.

Coding a script with intermessage delays
The following example illustrates a network definition and two message generation
decks that show the coding required to define and change intermessage delays.
This example demonstrates how to create simulations that represent actual
message traffic with the system under test.
NET1 NTWRK UTI=1 Beginning of NET1, specifies user time
* interval equal to 0.01 seconds.
*
* Sample WSim Script
* This script illustrates the coding required to define and change
* intermessage delays with operands on network definition and
* message generation statements.
*

.

. Network definition statements.

.
PATH1 PATH DECK1 Defines a path for a device to follow
* during message generation.
PATH2 PATH DECK2 Defines a path for a device to follow
* during message generation.
UTI1 UTI 100 Defines UTI1.

Chapter 15. Understanding intermessage delays 161

UTI2 UTI 500 Defines UTI2.
TCP1 TCPIP
DEV1 DEV DELAY=R(1,10), Defines delay for DEV1.

THKTIME=UNLOCK, Determines the start of the delay for DEV1.
PATH=(PATH1) Specifies that DEV1 process the decks

* defined by PATH1.
DEV2 DEV THKTIME=IMMED, Starts the delay for DEV2 immediately.

PATH=(PATH2) Specifies that DEV2 process the decks
* defined by PATH2.

.

. Network definition statements.

.
*

DECK1 MSGTXT
* Beginning of DECK1 for DEV1.
DELAY1 DELAY UTI=UTI2, Changes the active intermessage delay for

TIME=F30 the next message by specifying the user time
* interval coded on UTI2 and a new delay value.
* WSim then calculates the intermessage delay
* specified by DELAY1.
MSG1 TEXT (PW5) Places PW5 into the buffer.
MSG2 TEXT (USER5) Interrupts message generation and sends MSG1.
* When all conditions for message generation
* have been met and after the delay expires,
* WSim reenters message generation and places
* USER5 into the buffer.

.

. Message generation statements.

.
ENDTXT End of DECK1.

*

DECK2 MSGTXT
* Beginning of DECK2 for DEV2.
SETUTI1 SETUTI UTI=UTI1 Overrides NTWRK user time interval and
* sets DEV2 UTI to UTI1.

.

. Message generation statements.

.
ENDTXT End of DECK2.

In this example, the UTI operand on the NTWRK statement defines a user time
interval equal to 0.01 seconds for all resources on the network. In addition, a UTI
statement named UTI1 provides an alternate user time interval equal to 1 second;
UTI2 provides a user time interval equal to 5 seconds.

The network definition also provides two DEV statements, DEV1 and DEV2. The
DELAY operand on DEV1 changes the active delay value to a random number 1 -
10. WSim uses this delay value to calculate intermessage delays for device 1. Also
on DEV1, THKTIME=UNLOCK specifies that the intermessage delay does not start
until DEV1 is ready to generate messages. On DEV2, THKTIME=IMMED specifies
that WSim starts intermessage delays for device 2 immediately after ending
message generation.

DECK1 is the message generation deck for device 1. WSim calculates the active
intermessage delay for this device by multiplying the delay value defined on DEV1
by the user time interval specified on the NTWRK statement. The DELAY
statement named DELAY1 changes this intermessage delay, however, during
MSG2. Because THKTIME=UNLOCK for this device, WSim calculates the
intermessage delay defined by the DELAY statement before it reenters message
generation following MSG1: 5 seconds (UTI=UTI2) multiplied by 30 (TIME=F30).
This calculation results in an intermessage delay equal to 150 seconds (2.5
minutes). This intermessage delay is active only for MSG1.

162 Creating Workload Simulator Scripts

DECK2 provides a SETUTI statement that overrides the active user time interval
specified on the NTWRK statement. The SETUTI statement specifies that WSim
calculate the intermessage delay with the user time interval defined by UTI1,
which is equal to 100 or 1 second, and the default delay value, F1. Every time
WSim sends a message generated by DECK2, it delays 1 second before sending the
next message (1 second X 1).

WSim processes the decks as follows:

Steps:

1. During message generation for DECK1, WSim processes MSG1, placing PW5
into the buffer. Then, WSim processes MSG2. Because this statement is a
conditional delimiter, WSim exits message generation for device 1 and sends
PW5 to the system under test. WSim then calculates the delay specified by
DELAY1.

2. WSim begins processing DECK2. When WSim processes SETUTI1, the user
time interval defined by UTI1 becomes the active user time interval for device
2. WSim continues to process DECK2 until it reaches a delimiter and exits
message generation for device 2.

3. If all conditions for message generation were satisfied for device 1 and DELAY1
expired, WSim reenters message generation for device 1, places MSG2 (USER5)
into the buffer, and resumes message generation. The intermessage delay
defined by DELAY1 is no longer active. The user time interval now active for
device 1 is calculated using the interval coded on the NTWRK statement and
the delay value coded on DEV1.

Chapter 15. Understanding intermessage delays 163

164 Creating Workload Simulator Scripts

Chapter 16. Defining logic tests

In WSim, you can create simulations that interact effectively with the system under
test by coding the IF message generation statement. As discussed in Chapter 12,
“Basic concepts,” on page 107, the IF statement defines a logic test based on
messages transmitted or received by simulated resources. With the IF statement,
you can also define logic tests that WSim evaluates immediately. These logic tests
are not dependent on message traffic with the system under test.

An IF statement logic test performs the following functions in your message
generation decks:
v Specifies comparisons that WSim performs on data sent or received by simulated

resources
v Specifies comparisons that WSim performs with counters, switches, and save or

user areas
v Specifies tests to determine whether events were completed
v Tests the current location of the cursor
v Alters the message generation process depending on the results of specified

comparisons
v Sets switches, overrides normal SNA responses, cancels current delays, saves

data, and logs messages.

In addition to IF statements in your message generation decks, you can include IF
statements in your network definition. The IF statements in your network
definition enable you to test messages sent or received for all devices in your
network. This chapter describes the differences between network-level and
message-level IF statements. It also describes how to code the IF message
generation statement to include logic testing in your message generation decks.

Information provided in this chapter includes the following:
v Understanding network-level and message-level logic tests
v Coding IF statement operands
v Understanding logic test processing
v Understanding logic test examples
v Using logic tests to create self-checking scripts.

This chapter provides detailed examples throughout to help you understand how
logic tests work and how you code logic tests in your message generation decks.

Understanding logic tests
You can define logic tests with IF statements coded on the network definition and
in message generation decks. The following sections describe each type of logic test
and provide a list of terms commonly used to describe message-level logic tests.

Network-level logic tests
You can specify network-level logic tests by coding IF network definition
statements in the network definition. Unlike message-level logic tests that apply

© Copyright IBM Corp. 1989, 2015 165

only to messages sent to or from a particular resource, network-level logic tests
apply to all resources on a network and enable you to test every message going in
or out of a network.

Note: Network-level logic tests are not evaluated for CPI-C simulations.

WSim defines network-level message generation statements as follows:
v You create network-level logic tests by coding IF message generation statements

in the network definition just before the PATH statement.
v WSim activates network-level tests when initializing the network; the tests

remain active throughout the simulation.
v WSim evaluates network-level tests in the order you code them on the network

definition and before evaluating any message-level logic tests.
v WSim does not use the name field on a network logic test; it has no effect on

processing order.
v You can code a maximum of 256 network logic tests in one network.
v You can code network logic tests for all resource types, including resources that

cannot generate messages.

Because WSim does not require you to code a name for IF network definition
statements, entries in the name field are optional:
name IF operand Defines a network-level logic test.

When you code a network-level IF statement, WSim requires that you specify
either the EVENT, LOC, LOCTEXT, or CURSOR operands:

EVENT=event
Specifies the name of an event to be tested.

LOC=location
Specifies the starting location of the data to be tested.

LOCTEXT={cntr|(data)|integer}
Specifies the data to be tested.

CURSOR=(row,col)
Specifies the cursor position to be compared with the current cursor
position.

For detailed information about other operands you can code on the IF network
definition statement, see the WSim Script Guide and Reference.

Message-level logic tests
You can specify message-level logic tests by coding IF message generation
statements in your message generation decks. Unlike network-level logic tests that
test every message going in or out of a network, message-level logic tests enable
you to test individual messages sent to or from a particular resource.

WSim defines message-level logic tests as follows:
v You create message-level logic tests by coding IF message generation statements

at any position in a message generation deck.
v Depending on the operands you code, message-level tests can apply to specific

types of messages.
v WSim activates a message-level test only when processing the message

generation deck containing the test.

166 Creating Workload Simulator Scripts

v You can deactivate a message-level logic test during message generation.
v WSim requires that you code a unique number in the name field of each

message-level IF statement where WHEN=IN or WHEN=OUT. The numbers you
code control the order in which WSim evaluates these IF statements against
messages sent to or received by simulated resources. For more information about
numbering these operands, see “Evaluating logic tests” on page 183.

v You can code up to 4095 IF statements numbered 0 to 4094 that specify
WHEN=IN and WHEN=OUT.

v You can create unlimited logic tests if you code WHEN=IMMED; WSim does not
require you to name these IF statements. For more information about the WHEN
operand, see “Coding the WHEN operand” on page 169.

You name a logic test by placing a number in the IF statement name field:
integer IF operand Defines message-level logic test.

As with network-level logic tests, WSim requires that you code either the EVENT,
LOC, LOCTEXT, or CURSOR operands:

EVENT=event
Specifies the name of an event to be tested.

LOC=location
Specifies the starting location of the data to be tested.

LOCTEXT={cntr|(data)|integer}
Specifies the data to be tested.

CURSOR=(row,col)
Specifies the cursor position to be compared with the current cursor
position.

For information about other operands you can code on the IF message generation
statement, see “Coding IF statement operands” on page 168.

Terminology used to describe message-level logic tests
To help clarify the explanations of logic testing provided in this chapter, the
following list defines terms used to describe the logic testing process:

Activate
WSim activates an IF statement as soon as it processes the statement
during message generation. When an IF statement is activated, it is ready
to perform a comparison.

Deactivate
WSim deactivates an IF statement when it processes a DEACT statement.
Under certain conditions, other message generation statements may also
deactivate an IF statement. When an IF statement is deactivated, it can no
longer perform a comparison.

Evaluate
WSim evaluates an IF statement when the comparison is performed. An IF
statement is evaluated differently depending on the value you code on the
WHEN operand:
v If you code WHEN=IN, WSim evaluates the IF statement when a

message is received from the system under test.
v If you code WHEN=OUT, WSim evaluates the IF statement when a

message is sent to the system under test.

Chapter 16. Defining logic tests 167

v If you code WHEN=IMMED, WSim evaluates the IF statement as soon
as it processes the statement during message generation.

Test condition
The specified state that must exist if the result of the comparison is true.

Met or Not met
When WSim evaluates an IF statement, the test condition is met if the
result of the comparison is true. The test condition is not met if the result
of the comparison is false.

THEN or ELSE action
If the test condition is met, WSim takes the action specified on the THEN
operand. If the test condition is not met, WSim takes the action specified
on the ELSE operand. No action is taken under the following conditions:
v The test condition is met, and you did not specify a THEN action.
v The test condition is not met, and you did not specify an ELSE action.
v WSim did not evaluate the logic test. In this case, processing continues

with no THEN or ELSE action being taken. See “Conditions under
which a logic test is not evaluated” on page 185 for more information.

These terms are used throughout this book to describe logic testing. For
clarification, you might want to refer to this list whenever you encounter one of
the terms.

Coding IF statement operands
WSim provides operands on the IF message generation statement that help you
create many different logic tests. Depending on the operands you code, you can
test message traffic with the system under test or test the value of switches and
counters. You can also specify actions to be taken after WSim completes the test.

The following provides a complete list of the operands you can code on IF
message generation statements to create varied logic tests:

AREA Specifies a save or user area location that stores the text WSim uses to test
messages.

COND Specifies the condition, such as equal (EQ) or not equal (NE), for which
WSim is to make the comparison.

CURSOR Specifies a cursor position to be compared with the current cursor position.

EVENT Specifies the name of an event to be tested.

DELAY Specifies that WSim cancels the active intermessage delay when it takes the
specified THEN action. If you code the DELAY operand, you must also
code the THEN operand.

DATASAVE Specifies data to be saved in a save area when WSim tests a message and
takes the THEN action. If you code the DATASAVE operand, you must also
code the THEN operand.

ELSE Specifies the action WSim takes if the test condition is not met.

LENG Specifies the length of the text value in the user or save area named by the
AREA operand.

LOC Specifies the starting location of the data to be tested.

LOCTEXT Specifies the data to be tested.

LOCLENG Defines a maximum length to be associated with the LOC operand data.

168 Creating Workload Simulator Scripts

LOG Specifies data to be written in a log record when the test is made and the
THEN action is taken.

RESP Specifies that if the THEN action is not taken, WSim does not generate an
automatic SNA response for this message.

SCAN Specifies that WSim scans messages sequentially for data specified by the
TEXT, AREA, or UTBL operand.

SCANCNTR Specifies a counter to be set to the offset of a save or user area, buffer, or
data stream where the test condition is met.

SNASCOPE Specifies which SNA flow WSim tests for the data coded on the TEXT,
AREA, or UTBL operands.

STATUS Specifies that WSim keeps this IF statement active.

TEXT Specifies the text value for which the test is made.

THEN Specifies the action to be taken if the test condition is met.

TYPE Specifies the type of terminal for which this IF statement is to be evaluated.

UTBL Specifies the name or the number of a user table that contains entries to be
compared with the data defined on the LOC operand.

UTBLCNTR Specifies a counter to be set to the index of the user table entry that caused
the logic test to be met.

WHEN Specifies when WSim evaluates the logic test.

The following sections describe commonly used IF statement operands:
v “Coding the WHEN operand”
v “Coding the TEXT and AREA operands” on page 170
v “Coding the LOC operand” on page 171
v “Coding the LOCTEXT operand” on page 172
v “Coding the THEN and ELSE operands” on page 173
v “Coding the UTBL and UTBLCNTR operands” on page 178
v “Coding the SCANCNTR operand” on page 179.

For detailed information about other IF statement operands and their coding
requirements, see the WSim Script Guide and Reference.

Coding the WHEN operand
The values that you code on the WHEN operand determine when WSim evaluates
a logic test:

OUT WSim evaluates the IF statement when a message is sent to the system under
test.

IN WSim evaluates the IF statement when a message is received from the system
under test. This is the default if you do not code the WHEN operand.

IMMED WSim evaluates IF statements to test switches, counters, save and user areas,
events, or data in the buffer.
Note: IMMED is the only meaningful value for CPI-C simulations.

Although you can have logic tests active for input and output messages at the
same time, WSim evaluates active logic tests only against the appropriate type of
message.

The following example illustrates how WSim evaluates IF statements against the
appropriate type of message:

Chapter 16. Defining logic tests 169

DECKA MSGTXT
* Beginning of DECKA.
MSG1 TEXT (ACCOUNT 15409) Defines MSG1.
0 IF LOC=U+0,TEXT=(SAVE), Defines logic test 0 to test data in

WHEN=IN,THEN=CONT the user area against text SAVE.
1 IF LOC=SW2,THEN=CONT, Defines logic test 1 to test device

WHEN=IN switch 2.
2 IF LOC=NSW32,WHEN=OUT, Defines logic test to test network

THEN=CONT,ELSE=WAIT switch 32.
MSG2 TEXT (data) Defines MSG2.

ENDTXT End of DECKA.

The following steps describe how WSim processes DECKA:

Steps:

1. WSim processes DECKA until it reaches the TEXT statement named MSG2.
MSG2 causes the message generated by MSG1 to be sent. WSim then evaluates
the logic test defined by IF statement 2, in which WHEN=OUT.

2. When WSim receives a message from the system under test, it evaluates the
logic tests defined by IF statements 0 and 1.

For more information about the WHEN operand, see “Evaluating logic tests” on
page 183.

Coding the TEXT and AREA operands
The values that you code on the TEXT and AREA operands specify the text or the
location of the text that WSim uses as the basis of the logic test comparison:
v The TEXT operand specifies the exact text against which WSim makes the

comparison.
v The AREA operand specifies the save or user area location that contains the text

against which WSim makes the comparison.

When you code the TEXT operand, you can specify one of the following values:

RESP Specifies that the data to be used in the comparison was specified on
the RESP operand of the previous TEXT statement. If you did not code
the RESP operand on the statement, WSim does not evaluate the logic
test.

cntr Specifies that the value of a counter is to be used in the comparison.
You can specify a counter on the TEXT operand only if you also specify
a counter on the LOC operand or if you also specify a counter or
integer on the LOCTEXT operand. cntr is the name of a valid counter.

(data) Specifies the data to be used in the comparison. You can also code data
field options within the text delimiters.

'xx' Specifies a test under mask, which compares a byte of data to the mask
specified by the 2 hexadecimal digits within single quotation marks. If
all of the bits set on in the mask byte are set on in the data byte, WSim
takes the specified THEN action. If any of the bits are not set on, WSim
takes the specified ELSE action.

integer Specifies a 1- to 10-digit integer from 0 to 2147483647 to be used in the
comparison. WSim compares the counter specified on the LOC or
LOCTEXT operand or the integer specified on the LOCTEXT operand
against integer. You can only code this value when you specify one of
the above integers.

Note: WSim does not allow the TEXT operand when you specify a test on a switch
with the LOC operand or when you code the AREA or LENG operands.

170 Creating Workload Simulator Scripts

When you code the AREA operand, you can specify one of the following options,
where value is an integer 0 - 32766 or the name of a counter whose value is within
this range. Zero is the offset to the first byte of the field for positive offsets (+value)
and the offset to the last byte of the field for negative offsets (-value).

N±value Specifies that the text is located at an offset from the start (+value) or
back from the end (-value) of the network user area.

Ns+value Specifies that the text for the comparison is located at offset value
from the start of a network save area s. s is an integer from 1 to
4095.

s+value Specifies that the text for the comparison is located at offset value
from the start of save area s. s is an integer from 1 to 4095.

U±value Specifies that the text is located at an offset from the start (+value) or
back from the end (-value) of the device user area.

Note: WSim does not recognize the AREA operand when you specify the name of
a counter on the LOC operand or when you code the LOCTEXT or TEXT operand.

The following example illustrates how you code logic tests with the TEXT and
AREA operands.
DECK1 MSGTXT
* Beginning of DECK1

.

. Message generation statements

.
5 IF TEXT=(TEST DATA), Defines a logic test comparing data at

LOC=U+0,THEN=CONT location U+0 against text TEST DATA.
.
. Message generation statements.
.

6 IF AREA=N+5,LENG=20, Defines a logic test comparing data at
LOC=B+1,THEN=CONT location B+1 against 20 bytes of data

* at a location offset 5 bytes into the
* network user area.

ENDTXT End of DECK1.

Coding the LOC operand
The LOC operand specifies the starting location at which WSim begins the
comparing process for the logic test. When you specify one of the following
options, WSim tests data against a counter's value or against the actual data
stream, including any headers and control information. value is an integer from 0
to 32766 or the name of a counter whose value is within this range.

cntr Specifies a test on the value of a counter. cntr is the name of a valid
counter.

D+value Specifies a test on the incoming or outgoing data stream at offset value.

RH+value Specifies a test on the request/response header at offset value. This
option acts the same as D+value for non-SNA devices.

RU+value Specifies a test on the request/response unit at offset value. This option
acts the same as D+value for non-SNA devices.

TH+value Specifies a test on the transmission header at offset value. This option
acts the same as D+value for non-SNA devices.

The B, C, and (row,col) values specify a logic test on the data as it appears in the
buffer, excluding headers and control information. value is an integer 0 - 32766 or
the name of a counter whose value is within this range.

Chapter 16. Defining logic tests 171

B±value Specifies that the test be at an offset from the start of data in the device
buffer (+value), excluding headers, or back from the end of the data in
the buffer (-value) for nondisplay devices. For display devices, -value
specifies that the test be made at an offset back from the end of the
screen image buffer.

C±value Specifies that the test be at an offset from the cursor (+value) or at an
offset back from the cursor (-value).

(row,col) Specifies that the test be made at the specified row and column of the
screen image of a display device. If specified for a nondisplay device,
WSim ignores this value. row and col are integers 1 - 255 or names of
valid counters.

To test whether network, terminal, and device switches are on, you can code the
following values:

NSWn
NSWn&NSWm&...
NSWn│NSWm│...

Specifies that WSim tests one or a combination of the 4095 network-level
switches. n and m are switch numbers from 1 to 4095. You can test
combinations of switches by using the and (&) or the or (│) logic operator. Do
not mix logic operators on one LOC operand.

TSWn
TSWn&TSWm&...
TSWn│TSWm│...

Specifies that WSim tests one or a combination of the 4095 terminal-level
switches. n and m are switch numbers from 1 to 4095. You can test
combinations of switches by using the and (&) or the or (│) logic operator. Do
not mix logic operators on one LOC operand.

SWn
SWn&SWm&...
SWn│SWm│...

Specifies that WSim tests one or a combination of the 4095 device-level
switches. n and m are switch numbers 1 - 4095. You can test combinations of
switches by using the and (&) or the or (│) logic operator. Do not mix logic
operators on one LOC operand.

Note: Different level switches might be used together.

The following example shows how to code the LOC operand:
0 IF LOC=C+0,TEXT=(SAVE), Defines logic test 0.

TYPE=LU2,THEN=CONT

In the preceding example, LOC=C+0 causes WSim to begin comparing data at the
first byte starting at the current cursor location. Because TYPE=LU2, WSim
evaluates this logic test only for an SNA LU2 terminal.

For SNA terminals, WSim evaluates the following values on SNA response
messages and on data transfers: D, TH, RH, RU, N, U, and s.

Coding the LOCTEXT operand
The LOCTEXT operand specifies the actual data to be compared. The LOCTEXT
operand causes the IF statement to always be evaluated when the conditions
specified on the TYPE, WHEN, and SNASCOPE operands are met. See WSim Script
Guide and Reference for details about the LOCTEXT operand.

172 Creating Workload Simulator Scripts

The following options are valid for the LOCTEXT operand:

cntr Specifies a counter whose value is to be used in the comparison. cntr is the
name of a valid counter. See “Coding the LOC operand” on page 171 for a
list of valid counters. WSim compares the counter or integer specified on
the TEXT operand against cntr.

(data) Specifies the data to be used in the comparison. You can also code data
field options within the text delimiters.

integer Specifies a 1- to 10-digit integer from 0 to 2147483647 to be used in the
comparison. WSim compares the counter or integer specified on the TEXT
operand against integer.

Below gives an example of coding the LOCTEXT operand.
1 IF WHEN=IMMED,LOCTEXT=($RECALL,B+45,5$), Check 2 different screen

COND=EQ,TEXT=($RECALL,B+132,5$), locations to see if they
THEN=NSW1(ON) are equal.

Note: LOCTEXT cannot be coded with LOCLENG, AREA, LENG, LOC, CURSOR,
or EVENT.

Coding the THEN and ELSE operands
The values that you code on the THEN and ELSE operands name an action WSim
takes when evaluating a logic test. The THEN operand defines the action WSim
takes if the specified comparison is successful; the ELSE operand defines the action
WSim takes if the specified comparison fails. If the test condition is met, WSim
takes the action specified on the THEN operand. No action is taken if you did not
code the THEN operand. If the test condition is not met, WSim takes the action
specified on the ELSE operand. Again, no action is taken if you did not specify the
ELSE operand.

When WSim takes an action following a logic test, indicators, switches, or message
generation paths may be altered. When WSim does not take an action, all
indicators, switches, and message generation paths remain as they were before
WSim evaluated the IF statement.

You can specify actions to be taken following a logic test by coding one of the
following values on the THEN and ELSE operands:

ABORT
Specifies that WSim aborts the current message generation deck,
deactivates all active logic tests, and selects the next message generation
deck for processing as specified by the path selection rules.

B (Branch)
Specifies a branch to another location within the message generation decks.
A branch causes WSim to stop processing at one point in a deck and begin
processing at another point in the same deck or in another deck. This
action also resets the WAIT indicator.

C (Call)
Specifies a call for a label in the named deck or a label in the same deck
WSim is processing. Unlike a branch, WSim saves a return pointer
allowing message generation to return to the point of the call. This action
also resets the WAIT indicator.

Chapter 16. Defining logic tests 173

CONT (Continue)
Specifies that message generation continues in the current message
generation deck. This action also resets the WAIT indicator.

E (Execute)
Specifies immediate execution of statements located at the named message
generation deck.

IGNORE
Specifies that WSim takes no action. In addition, WSim does not perform a
WAIT, CONT, BRANCH, CALL, RELEASE, QUIESCE, ABORT, IGNORE,
or RETURN action for the message being tested, even if the message meets
a subsequent logic test's condition.

NSW(ON│OFF)
Specifies that WSim sets on or clears all 4095 network switches.

NSWn(ON│OFF)
Specifies that WSim sets on or clears network switch n. n is an integer 1 -
4095.

QUIESCE
Stops message generation until WSim performs a release action. A quiesced
device receives messages but responds negatively to polls and cannot
generate messages. This action also resets the WAIT indicator.

QSIGNAL(event)
Specifies that the named event is to be signaled for the active device only.

RELEASE
Specifies that a quiesced device continue message generation. This action
also resets the WAIT indicator.

RESET(event)
Specifies that the named event is no longer posted.

RETURN
Specifies that WSim returns to message generation after the point of the
last call. If you have not issued any CALL statements, WSim writes a
message trace (MTRC) record or STL trace (STRC) record to the log data
set and ignores the return action. This action also resets the WAIT indicator
in either case.

SIGNAL(event)
Specifies that the named event is to be signaled.

SW(ON│OFF)
Specifies that WSim sets on or clears all 4095 device switches.

SWn(ON│OFF)
Specifies that WSim sets on or clears device switch n. n is an integer 1 -
4095.

TSW(ON│OFF)
Specifies that WSim sets on or clears all 4095 terminal switches.

TSWn(ON│OFF)
Specifies that WSim sets on or clears terminal switch n. n is an integer 1 -
4095.

VERIFY-(data)
Causes WSim to log a VRFY record on the network's log data set.

WAIT Inhibits further entry into message generation.

174 Creating Workload Simulator Scripts

WAIT (event)
Inhibits entry into message generation until the named event is posted.

The WAIT(event), POST(event), RESET(event), SIGNAL(event), and QSIGNAL(event)
actions of the THEN and ELSE operands enable you to control events that you
name. See the WSim Script Guide and Reference for information about the syntax
required for these values. For more information about events, see “Controlling
events” on page 209.

The B (Branch), C (Call), and E (Execute) actions enable you to specify the name of
a message generation deck, the label of a statement in the current deck, or the
name of a deck and the label of a statement in that deck. The following list
illustrates these three coding methods using the B (branch) action.

BERROR Branches to the deck named ERROR.

B-MSG1 Branches to the statement labeled MSG1 in the current deck.

BERROR-MSG1 Branches to the statement named MSG1 in the deck named ERROR.

The following example shows how to code the THEN and ELSE operands.
0 IF LOC=B+5,TEXT=(HELLO), Defines logic test 0.

THEN=CONT,ELSE=WAIT

In this example, WSim tests incoming messages against the specified text HELLO.
If an incoming message matches HELLO, WSim performs THEN=CONT,
continuing the message generation process. If an incoming message does not match
HELLO, WSim performs ELSE=WAIT and waits for another incoming message.

The following sections provide more information about two actions you can code
on the THEN and ELSE operands:
v E (Execute)
v VERIFY-(data).

E (Execute)
E (Execute) specifies the location of a deck containing statements that WSim is to
execute immediately while the logic testing procedure is active. The following list
shows the types of statements WSim can execute as a result of the E (Execute)
action.
v BRANCH
v CALC
v DATASAVE
v DEACT
v EVENT
v IF (WHEN=IN or OUT)
v LABEL
v LOG
v MONITOR
v MSGTXT
v ON
v OPCMND
v RESET
v SET
v SETSW

Chapter 16. Defining logic tests 175

v WTO
v WTOABRHD.

If WSim encounters any other statement type when processing E (Execute), it ends
the execute action and begins processing again.

The following example shows how the execute action affects message generation.
DECK1 MSGTXT
* Beginning of DECK1.
MSG1 TEXT (PW512) Data for MSG1.
0 IF LOC=B+0,TEXT=(LOGON OK),

THEN=EDECK2,SCAN=YES
WAITA WAIT

ENDTXT End of DECK1.
*
DECK2 MSGTXT
* Beginning of DECK2.

DATASAVE LOC=*,AREA=U+0,LENG=10
1 IF LOC=B+0,TEXT=(RESPONSE 1),

THEN=CONT,SCAN=YES
WTO1 WTO (IF 1 ACTIVATED WAITING), Message to operator console.

(ON RESPONSE 1)
ENDTXT End of DECK2.

WSim processes DECK1 and DECK2 as described in the following steps:

Steps:

1. WSim begins processing DECK1, generating MSG1 and activating IF statement
0. When WSim processes the WAIT statement, it sends MSG1 to the system
under test. When (and only when) the system under test returns the response
LOGON OK and meets the conditions set by IF statement 0, WSim then begins
to process DECK2, as specified by THEN=EDECK2.

Note: If the THEN operand action had specified branch or call rather than
execute, WSim would not have processed DECK2 until the next time message
generation began for the resource.

2. WSim processes the DATASAVE statement, which specifies LOC=*. This
operand specifies that WSim saves the data that satisfied the last IF statement
for which it took the THEN action. In the preceding example, the data saved
would be LOGON OK regardless of its offset into the received message.

3. After processing the DATASAVE statement, WSim activates IF statement 1 and
processes the WTO statement. The WTO statement writes the message “IF 1
ACTIVATED WAITING ON RESPONSE 1” to the operator.

4. IF 1 resets the WAIT indicator if RESPONSE 1 is found in the data.

VERIFY-(data)
VERIFY-(data) causes WSim to log a VRFY record on the log data set. Each VRFY
record contains information about a logic test, including the type of test, the
expected or comparison data, and the actual data in the record. The Loglist Utility
recognizes each VRFY record and produces verification reports based on this
information.

By examining the Loglist Utility verification reports, you can tell if a logic test
failed and, if so, exactly why it failed. If you include an optional description when
you code the VERIFY action, WSim identifies specific logic tests in the Loglist
Utility output and groups VRFY records into a verification summary report.

176 Creating Workload Simulator Scripts

The following example shows how to code the VERIFY value on the ELSE
operand:
0 IF COND=EQ, Coding the verify action on an

WHEN=IMMED, IF statement.
TEXT=(HELLO),
LOC=B+39,
THEN=CONT,
ELSE=VERIFY-(***FAILURE***)

If WSim does not find HELLO at offset 39 in the device buffer when processing IF
statement 0, it logs a VRFY log record with the message “***FAILURE***”. When
processed by the Loglist Utility, this VRFY record results in the following report:

VERIFICATION REPORT

DESCRIPTION LOCATION LENG COND EXPECTED VALUE ACTUAL VALUE
------------- -------- ---- ---- --------------- ------------
FAILURE B+39 5 EQ HELLO BYE

From the sample verification report, you can see that WSim found the string
“BYE” at the specified location, rather than “HELLO”.

Although the VERIFY action easily verifies data in a buffer as shown in the
preceding example, you can use it with any valid combination of IF statement
operands. For example, you can verify switch settings, counter settings, cursor
locations, the status of events, and data in user or save areas.

For detailed information about coding VERIFY-(data), see the WSim Script Guide and
Reference. For a detailed description of the Loglist Utility verification reports, see
WSim Utilities Guide.

Coding THEN and ELSE on multiple IF statements
When multiple logic tests are active for a message generation deck, WSim
evaluates the tests each time it sends messages to or receives messages from the
system under test. Because the actions specified on the THEN and ELSE operands
affect message generation, WSim can take only one of the following actions for
each message sent or received:
v B (Branch)
v C (Call)
v CONT (Continue)
v IGNORE
v QUIESCE
v RELEASE
v RETURN
v WAIT.

Although WSim can take one of these actions only on a single data transfer, it
could take many other actions, such as setting switches, posting events, and
signaling events. WSim always performs these actions, even if it has already taken
another action for that message.

The actions specified by the B (Branch), C (Call), CONT (Continue), RETURN,
RELEASE, QUIESCE, and WAIT values on the THEN and ELSE operands do not
take effect immediately upon evaluation of the logic test. These values alter
message generation processing the next time WSim begins message generation for
a resource. For example, the branch or call actions define a new entry point for

Chapter 16. Defining logic tests 177

message generation, enabling you to alter the message generation path
dynamically depending on messages sent and received by a resource.

Each of these actions except WAIT also resets the WAIT indicator for a resource.
For example, if the WAIT indicator is on for a device when WSim processes
THEN=QUIESCE or ELSE=QUIESCE, it resets the WAIT indicator and turns the
QUIESCE indicator on. These actions have no effect on the EVENT WAIT indicator.

The IGNORE action does not change pointers or indicators; it cancels the action
specified on subsequent IF statements, such as B (Branch), C (Call), CONT
(Continue), QUIESCE, RELEASE, RETURN, and WAIT, for the message being
tested. IGNORE does not cancel other actions, such as setting switches, executing
other message generation statements, or posting and signaling events.

You can use the IGNORE action to screen out messages WSim should ignore when
determining correct responses or actions, as shown in the following example:
0 IF LOC=RU+0, WSim ignores the message READY when evaluating logic

TEXT=(READY), tests that specify the B, C, CONT, QUIESCE, RELEASE,
THEN=IGNORE RETURN, or WAIT actions.

Coding the UTBL and UTBLCNTR operands
The IF statement enables you to specify two operands that reference entries in a
user table:
v UTBL={integer│name}
v UTBLCNTR=cntr.

When you code the UTBL operand instead of the TEXT or AREA operands, WSim
compares each user table entry to the data at the location specified by the LOC or
LOCTEXT operand.

Note: You cannot code the UTBL operand when you specify the name of a counter
or switch on the LOC operand or when you specify the name of a counter or
integer on the LOCTEXT operand.

WSim continues to compare the data until it finds an entry that matches the data
or scans all of the entries. During the testing process, WSim may take one of the
following actions:
v If WSim finds a user table entry that meets the specified condition, WSim

performs the THEN action.
v If no entries meet the conditions set by the IF statement, WSim performs the

ELSE action.
v If a comparison cannot be made because the length of the data specified by the

LOC operand is less than the smallest UTBL entry and the LOCLENG operand
is not specified, WSim takes no action.

To code the UTBL operand, you can specify 0 - 255 for integer or the name of an
MSGUTBL statement.

The UTBLCNTR operand specifies that WSim set a network, line, terminal, or
device counter to the index value of the UTBL entry that met the test condition. As
discussed in “Generating messages with the $UTBL$ data field option” on page
123, WSim indexes tables entries beginning with zero.

To code the UTBLCNTR operand, you can specify the name of a valid counter for
cntr.

178 Creating Workload Simulator Scripts

For more information about the UTBL and UTBLCNTR operands, see “Example of
logic testing for a display terminal using WHEN=IMMED” on page 188.

Coding the SCANCNTR operand
The SCANCNTR operand enables you to set a counter to the offset of the data that
caused the logic test's condition to be met. When you code SCANCNTR=cntr and
the condition is met, WSim assigns the value of the offset that satisfied the test
condition to the specified counter. If the condition is not met, WSim does not
change the value of the counter.

To code the SCANCNTR operand, you can specify the name of a valid counter for
cntr, as shown in the following example:
1 IF TEXT=(TEST MESSAGE), Tests data in buffer at a zero offset

LOC=B+0,SCANCNTR=DC1, and sets DC1 to the offset.
THEN=CONT,ELSE=WAIT

Notes:

v WSim does not allow the SCANCNTR operand when you code the following:
– CURSOR and EVENT operands
– The name of a counter or switch on the LOC operand
– The name of a counter or integer on the LOCTEXT operand.

v WSim does not require you to code the SCAN operand when you code
SCANCNTR. However, you still must code SCAN if you want WSim to scan for
the data specified by the AREA, TEXT, or UTBL operands.

v If you specify the same counter on both the SCANCNTR and UTBLCNTR
operands, the SCANCNTR operand takes precedence if the test condition is met.

The following list defines the offset returned by the SCANCNTR operand if the
test condition is met.

LOC Operand Offset Returned

B±value The offset from the beginning of the device buffer.

C±value The offset from the beginning of the device buffer.

(row,col) The offset from the beginning of the device buffer.

N±value The offset from the beginning of the specified save or user area.

Ns+value The offset from the beginning of the specified save or user area.

s+value The offset from the beginning of the specified save or user area.

U±value The offset from the beginning of the specified save or user area.

D+value The offset from the beginning of the incoming or outgoing data
stream.

TH+value The offset from the beginning of the incoming or outgoing data
stream.

RH+value The offset from the beginning of the request/response header (RH)
of the incoming or outgoing data stream.

RU+value The offset from the beginning of the request/response unit (RU) of
the incoming or outgoing data stream.

For the LOCTEXT operand, the list below defines the offset returned by the
SCANCNTR operand if the test condition is met.

Chapter 16. Defining logic tests 179

LOCTEXT Operand Offset Returned

(data) The offset from the beginning of the data specified.

The SCANCNTR operand can help you locate data when an offset is unknown or
variable. For example, when the simulated resource interacts with a full-screen
application, such as the Interactive System Productivity Facility (ISPF), WSim can
display a list of data set names. To select a particular data set when you are
uncertain of its location on the screen, you can code a logic test using the
SCANCNTR operand, as shown in the following example.
DECK1 MSGTXT
* Sample Message Generation Deck
* This message generation deck illustrates using the SCANCNTR operand
* to code a logic test.
*
* Beginning of DECK1.

.

. Message generation statements.

.
SCANLOOP LABEL Specifies a label WSim uses to branch or
* call to this point in DECK1.
IFA IF WHEN=IMMED, WSim scans the buffer for a data set

LOC=B+0, named MYDATA. If the test condition is
TEXT=(MYDATA), met, WSim branches to MATCH and sets
SCAN=YES, device counter 1 to the offset.
SCANCNTR=DC1,
THEN=B-MATCH

NOMATCH PF8 If the test condition is not met,
* WSim scrolls down, and
STOP1 STOP stops generating messages.
BRANCH1 BRANCH LABEL=SCANLOOP WSim loops back to and begins processing
* at the statement labeled SCANLOOP.
MATCH LABEL Specifies a label WSim uses to branch or
* call to this statement after it finds MYDATA.
CURSOR1 CURSOR OFFSET=DC1 WSim sets the cursor at an offset equal
* to the position of MYDATA.
BKTAB1 BTAB WSim tabs backward to an unprotected field,
MSG1 TEXT (S) selects MYDATA, and
ENTER1 ENTER sends MSG1 to the system under test.

ENDTXT END of DECK1.

The following steps describe how WSim processes DECK1:

Steps:

1. WSim processes DECK1, activating the logic test defined by IFA. This logic test
specifies that WSim scans the buffer for a data set named MYDATA. If it finds
MYDATA, WSim sets device counter 1 to the offset location of MYDATA and
branches to the LABEL statement named MATCH. If it does not find MYDATA,
WSim scrolls down with the PF8 statement and then processes the STOP
statement. The simulated resource appears to be waiting for a new screen.

2. When WSim finds MYDATA, it continues processing DECK1 from the LABEL
statement named MATCH. WSim sets the cursor to the offset position of
MYDATA and tabs backward to an unprotected field. WSim then selects the
data set MYDATA by processing MSG1, ENTER1, and the ENDTXT statement.

180 Creating Workload Simulator Scripts

Processing logic tests
The following sections discuss how WSim processes logic tests:
v Activating logic tests
v Deactivating logic tests
v Preventing the deactivation of logic tests
v Evaluating logic tests.

Activating logic tests
WSim activates a message-level logic test only when it processes the associated IF
statement. When activating a logic test, WSim associates the IF statement with the
terminal. WSim does not perform any testing or comparisons when activating a
logic test; these actions cannot take place until WSim has something to compare.

Note: Only the last encountered IF statement with the same number is active. For
example, when IF number 0 is active and another IF number 0 is encountered, the
second IF replaces the first IF as the active IF.

In the following example, WSim generates the message QUERY NAMES and
activates the logic test:
DECK9 MSGTXT
* Beginning of DECK9.
MSG1 TEXT (QUERY NAMES) Defines MSG1.
0 IF LOC=RU+0, Tests incoming messages.

TEXT=(READY),
THEN=CONT,WHEN=IN

WAIT1 WAIT Stops message generation.
ENDTXT End of DECK9.

The following steps describe how WSim processes DECK9:

Steps:

1. WSim processes MSG1 and places the message QUERY NAMES into the buffer.
Then, WSim activates the logic test defined by IF statement 0. Because the
statement specifies WHEN=IN, WSim cannot evaluate the logic test until it
receives a message from the system under test.

2. Next, WSim processes the WAIT statement. Because the WAIT statement is a
delimiter, WSim turns on the WAIT indicator and sends MSG1 to the system
under test. Message generation for the simulated resource then ends. When
WSim receives a message from the system under test, it compares the message
with the test characters “READY”.

3. If the message from the system under test matches the test characters, WSim
turns off the WAIT indicator and continues message generation for this
resource. If the message does not match, WSim continues to wait for the next
message received from the system under test. When WSim receives another
message, it repeats the test process.

Note: Network-level logic tests are always active for all terminals to which they
apply.

Deactivating logic tests
Although network-level logic tests remain active throughout a simulation,
message-level logic tests remain active only while WSim processes the deck

Chapter 16. Defining logic tests 181

containing the IF statement. In addition, WSim can deactivate a logic test when it
processes one of the following statements:

DEACT Deactivates logic tests that specify WHEN=IN and WHEN=OUT. This
statement does not apply to logic tests that specify WHEN=IMMED.

IF Deactivates any preceding IF statement with the same name.

TEXT Deactivates all currently active message-level logic tests unless
STATUS=HOLD was coded on the IF statement.

CMND Deactivates all currently active message-level logic tests for SNA devices
unless STATUS=HOLD was coded on the IF statement.

In addition, WSim deactivates logic tests in a deck with no outstanding CALL
statements when it reenters path selection after processing the deck's ENDTXT
statement.

WSim normally deactivates logic tests after processing a TEXT statement, unless
you code the IF statement with the STATUS=HOLD operand. The DEACT
statement, however, deactivates all specified message generation logic tests, even if
they specify STATUS=HOLD. For more information about the STATUS=HOLD
operand, see “Preventing the deactivation of logic tests” on page 183.

Note: The DEACT statement does not deactivate network-level IF statements.

To deactivate an IF statement with the DEACT statement, you code the IFS
operand:
ENDIF DEACT IFS=(0) Deactivates IF statement 0.

In this example, the DEACT statement deactivates the IF statement before WSim
processes any statement that could deactivate the logic test.

The following example shows two IF statements with the same number. When
WSim processes the second IF statement, it deactivates the previous logic test and
activates the new test.
DECK3 MSGTXT
* Beginning of DECK3.
MSG1 TEXT (PW23) Message to be sent.
0 IF LOC=RU+0,TEXT=(READY), Tests messages received from the

THEN=CONT,WHEN=IN system under test.
WAIT1 WAIT Stops message generation.
0 IF LOC=RU+10, Tests messages received from the

TEXT=(RUNNING), system under test.
THEN=CONT,WHEN=IN

WAIT2 WAIT
* Stops message generation.

ENDTXT End of DECK3.

The following steps describe how WSim processes DECK3:

Steps:

1. WSim generates MSG1, activates the logic test defined by the first IF statement,
turns on the WAIT indicator, and sends the message. When WSim receives the
message READY from the system under test, it turns off the WAIT indicator.

2. When the device reenters message generation, WSim then processes another IF
statement with the same label as the first IF statement. WSim activates the
second logic test, which deactivates the previous test. At this point, WSim
compares all incoming messages against the characters “RUNNING”.

182 Creating Workload Simulator Scripts

Note: When you simulate certain display devices, CLEAR, PA, or PF statements do
not deactivate an IF statement. You must code a DEACT statement following these
statements to deactivate a logic test. For more information about statements used
to simulate display devices, see Chapter 18, “Generating messages for specific
types of devices,” on page 219.

Preventing the deactivation of logic tests
The STATUS=HOLD operand on the IF statement enables you to prevent WSim
from deactivating a logic test when it processes a TEXT or CMND statement. For
example, you might want to send several messages to an application and test for
the response ERROR following each message. Because a TEXT or CMND statement
deactivates a message-level logic test, however, you must code an IF statement
after each TEXT or CMND statement, as in the following example:
DECK3 MSGTXT
* Beginning of DECK3.
MSG1 TEXT (PART 1578) Message 1.
0 IF LOC=RU+10,TEXT=(ERROR), Tests for response ERROR.

WHEN=IN,THEN=CERRDECK
MSG2 TEXT (PART 2990) Message 2.
1 IF LOC=RU+10,TEXT=(ERROR), Tests for response ERROR.

WHEN=IN,THEN=CERRDECK
MSG3 TEXT (PART 9156) Message 3.
2 IF LOC=RU+10,TEXT=(ERROR), Tests for response ERROR.

WHEN=IN,THEN=CERRDECK

You can simplify the deck illustrated in the preceding example by coding the IF
statement STATUS operand as shown in the following example. When you code
STATUS=HOLD, WSim does not allow a TEXT statement to deactivate the IF
statement:
DECK3 MSGTXT
* Beginning of DECK3.
0 IF LOC=RU+10,TEXT=(ERROR), Tests for response ERROR to the

WHEN=IN,THEN=CERRDECK, following TEXT statements.
STATUS=HOLD

MSG1 TEXT (PART 1578) Message 1.
MSG2 TEXT (PART 2990) Message 2.
MSG3 TEXT (PART 9156) Message 3.

If you code STATUS=HOLD, remember that a DEACT statement or selecting
another path entry (from the PATH statement) still deactivates the logic test. Also,
the IF statement can be deactivated by another IF statement with the same number.

Note: TEXT and CMND statements will first act as conditional delimiters and then
deactivate logic tests. This allows WHEN=OUT logic tests to be evaluated before
being deactivated.

Evaluating logic tests
During a simulation, WSim first evaluates all network logic tests in the order you
coded them on the network definition. Then WSim evaluates message-level logic
tests depending on the value you code for the WHEN operand:

IMMED If you specify WHEN=IMMED on an IF message generation statement,
WSim evaluates the logic test immediately during message generation, not
when it receives or sends messages from the system under test. Remember
that WHEN=IMMED creates a logic test that tests switches, counters, save
areas, user areas, events, or the device buffer, rather than message traffic
between WSim and the system under test.

Chapter 16. Defining logic tests 183

IN or OUT If you specify WHEN=IN or OUT, WSim evaluates both network-level and
message-level logic tests when it receives a message from or sends a
message to the system under test.

WSim alters the processing order for logic tests depending on how you code each
IF statement's name field. WSim requires that you code a number for each
message-level test containing the operands WHEN=IN or WHEN=OUT. The
number you code for these tests can affect the order in which WSim processes each
test.

For example, WSim processes each statement in a deck sequentially. However,
when you code several logic tests with WHEN=IN, each test requires an incoming
message before WSim can evaluate it. After receiving an incoming message, WSim
evaluates the outstanding logic tests with WHEN=IN based on the number in the
name field. If WSim has already activated IF statements 9, 3, and 25 where
WHEN=IN, it evaluates the statements in ascending order, 3, 9, and 25, regardless
of which statement WSim activated first.

The following example shows how WSim evaluates logic tests based on the
number in the name field:
DECK1 MSGTXT
* Beginning of DECK1.
5 IF WHEN=IN,TEXT=(HELLO), Tests for response HELLO.

THEN=CONT
0 IF WHEN=IN,TEXT=(BYE), Tests for response BYE.

THEN=WAIT
9 IF WHEN=IN,TEXT=(ERROR), Tests for response ERROR.

THEN=QUIESCE
WAIT1 WAIT Interrupts message generation.
MSG1 TEXT (PART 7102) Message 1.
1 IF WHEN=IN,TEXT=(WHAT), Tests for response WHAT.

THEN=WAIT

The following steps describe how WSim processes DECK1:

Steps:

1. WSim activates IF statement 5, then IF statement 0, and finally IF statement 9.
2. If WSim receives a message from the system under test, it evaluates the three

active IF statements in the following order: IF statement 0, IF statement 5, and
IF statement 9. WSim does not evaluate IF statement 1 because it has not yet
activated that statement.

When WSim sends a message to the system under test, it evaluates IF statements
with WHEN=OUT in the same manner as it does for WHEN=IN. For this reason,
remember to assign unique numbers to each IF statement that specifies WHEN=IN
or OUT.

To code the name field on an IF statement that specifies WHEN=IN or OUT, enter
an integer from 0 to 4094. WSim can maintain a total of 4095 active IF statements
that specify either WHEN=IN or WHEN=OUT at any one time.

Note: If you code WHEN=IMMED, WSim does not require an entry in the name
field. Therefore, you can code any number of IF statements that specify
WHEN=IMMED.

184 Creating Workload Simulator Scripts

Conditions under which a logic test is not evaluated
As stated earlier, the WHEN and TYPE operands restrict the data transfers for
which a logic test is evaluated. The following rules outline all of the conditions for
which a logic test is not evaluated for a transmitted or received message:
v The IF statement specifies WHEN=IN for a transmitted message or WHEN=OUT

for a received message.
v The terminal type specified by the IF statement TYPE operand does not match

the type of terminal associated with the message.
v The SNA flow type specified by the IF statement SNASCOPE operand does not

match the flow type.
v A user area or a save area was specified by the IF statement LOC or AREA

operand, and the area does not exist for the terminal and the LOCLENG
operand is not coded.

v The IF statement LOC operand specifies (row,col) for a non-display terminal and
the LOCLENG operand is not coded.

v The beginning location for the test as specified by the LOC or AREA operand is
not within the available data and the LOCLENG operand is not coded.

v The ending location for the test as specified by the LOC and TEXT operands or
the AREA and LENG operands is not within the available data and the
LOCLENG or LOCTEXT operand is not coded.

v The LOC operand is set to a null value (no data) and the LOCLENG operand is
not coded.

v The TEXT operand is set to a null value (no data) and the LOCLENG or
LOCTEXT operand is not coded.

v The TEXT=RESP operand is coded but a RESP was not coded on the previous
TEXT statement.

v When the value of LOC is greater than the length of the save area and the
LOCLENG operand is not coded.

v The IF statement CURSOR operand specified (row, col) and the value is not a
valid screen position for a display device or it is a non-display device.

Logic testing DBCS data
In the following examples and discussion, the SO character is represented using a
“<”, the SI character is represented using a “>”, and the first byte of each DBCS
character, which is referred to as the ward byte, is represented using a “.”
character.

DBCS data can be identified on a simulated 3270 screen by either being in a DBCS
field, having SO and SI characters wrapped around the DBCS data, or having the
character attributes indicate DBCS data. The DBCS data in a message sent or
received may or may not have SO and SI characters included.

Because of the above situation, logic testing DBCS data must be carefully thought
out. For example, if the DBCS data “.A.B.C” is located in a DBCS field or identified
using character attributes as DBCS data, you need to code the logic test as follows
to obtain a true result. Use the DATASAVE DBCSDEL function to delete the SO
and SI characters from the literal text DBCS data. DBCS data continues with a “+”
or “,” must end with an SI and start with an SO on the next line. The SI/SO pairs
at the continuation are ignored when the data is processed. Only the beginning SO
and ending SI are considered.

Chapter 16. Defining logic tests 185

DATASAVE AREA=1, save area 1 = .A.B.C
FUNCTION=DBCSDEL, delete SO and SI characters
TEXT=(<.A.B.C>) DBCS data with SO and SI characters

IF WHEN=IMMED, immediate if to
SCAN=YES, scan the
LOC=B+0, simulated screen image for
TEXT=($RECALL,1$), DBCS .A.B.C without SO/SI and
THEN=B-OK branch to label OK if .A.B.C found

WTO (NOT FOUND)

OK LABEL

If the DBCS data on the screen contains SO and SI characters such as “<.A.B.C>”,
the DATASAVE DBCSDEL function to delete the SO and SI characters is not
needed. The following logic test obtains a true result in this case.

IF WHEN=IMMED, immediate if to
SCAN=YES, scan the
LOC=B+0, simulated screen image for
TEXT=(<.A.B.C>), DBCS .A.B.C with SO/SI and
THEN=B-OK branch to label OK if <.A.B.C> found

WTO (NOT FOUND)

OK LABEL

Logic test examples
The following examples demonstrate how different logic tests affect the message
generation process. Each example includes the following information:
v A description of the example, including its purpose
v Output from the Preprocessor showing the message generation decks with

statement numbers
v A step-by-step description of how WSim processes the script
v Formatted message generation trace (MTRC) records produced by the Loglist

Utility.

The examples in this section illustrate the logic test process with sample MTRC
records and message deck listings produced by the Preprocessor. WSim writes
MTRC records to the log data set when you code MSGTRACE=YES on the
NTWRK statement. The Loglist Utility then formats these records, providing a
trace listing of how WSim processes message generation decks and the activity or
inactivity of network- and message-level logic tests.

The statement numbers on the MTRC records correspond to the statement numbers
on the message deck listings produced by the Preprocessor. The descriptions of
each example use these numbers to demonstrate the effect each statement has on
the message generation process.

For additional information about MTRC records and the Preprocessor, see WSim
Utilities Guide.

Example illustrating logic testing
The example below illustrates several different logic tests. The network is designed
to send a message and then wait for a return echo message before proceeding with
message generation.

186 Creating Workload Simulator Scripts

TESTNET NTWRK MSGTRACE=YES
* Sample WSim Script
* This script illustrates the coding required to send a message and
* wait for a return echo message before proceeding with message
* generation.
*
* Beginning of TESTNET,
* specifies MTRC records
* be written to the log
* data set.

.

. Network statements.

.
A IF LOC=B+0,TEXT=(*), Network logic test for

ELSE=WAIT,WHEN=OUT messages sent to the
* system under test.

.

. Network statements.

.

TESTMSG MSGTXT
* Beginning of deck named
* TESTMSG.
* STMT#
00001 MSG1 TEXT (TEST MSG ONE),

RESP=(TEST) Defines MSG1, specifies
* data to be compared for
* IF statements where
* TEXT=RESP.
00002 0 IF LOC=B+0,TEXT=RESP,

THEN=CONT,STATUS=HOLD First logic test.
00003 MSG2 TEXT (TEST MSG TWO) Defines MSG2, sends MSG1.
00004 1 IF LOC=B+0,TEXT=(TEST),

THEN=CONT Second logic test.
00005 MSG3 TEXT (TEST MSG THREE) Defines MSG3, sends MSG2.
00006 0 IF LOC=B+5,TEXT=(MESS),

THEN=CONT Third logic test.
00007 MSG4 TEXT (* LAST TEST MSG) Defines MSG4, sends MSG3.
00008 ENDTXT Sends MSG4, ends processing.

In the preceding example, network-level logic test A turns the WAIT indicator on
for each message sent to the system under test unless the first character sent is an
asterisk (*). The WAIT indicator stops WSim from processing the message
generation deck any further.

Each of the following steps provides the MTRC records formatted by the Loglist
Utility to illustrate how WSim processes the preceding script.

Steps:

1. After WSim initializes the network, it processes TESTMSG beginning with the
first TEXT statement. WSim places the data for MSG1 into the buffer and saves
the data defined by the RESP operand. Then, WSim continues message
generation, processing IF statement 0 and activating the logic test.
When WSim encounters the second TEXT statement, message generation stops
and WSim sends MSG1. WSim then evaluates network-level IF statement A;
because WSim does not find an asterisk (*) in the data, it turns on the WAIT
indicator. When WSim receives a message from the system under test, it then
evaluates IF statement 0 using the RESP data saved from MSG1, TEST. If the
message received does not match TEST, the test fails and no further processing
takes place. The WAIT indicator is still on, and WSim continues to test all
incoming messages. When an incoming message matches TEST, processing

Chapter 16. Defining logic tests 187

continues as specified by THEN=CONT. This coding enables WSim to resume
message generation at the current point in the message generation deck.
ITP447I MSG GEN ENTERED: STMT# 00001 OF DECK TESTMSG
ITP448I MSG GEN ENDED: STMT# 00003 OF DECK TESTMSG
ITP430I OUTPUT IF A (NETWORK IF) NOT MET - ELSE ACTION TAKEN: WAIT INDICATOR SET
ITP427I INPUT IF 0 (TESTMSG 00002) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

2. WSim then generates MSG2, activates the logic test defined by IF statement 1,
and sends the message. WSim then evaluates network-level IF statement A;
because WSim does not find an asterisk (*) in the data, it turns on the WAIT
indicator. Because IF statement 0 specifies STATUS=HOLD, that logic test
remains active. However, because the previous MSG2 did not specify the RESP
operand, WSim does not evaluate the test when it receives the return message.
Now, WSim evaluates the logic test defined by IF statement 1, and the THEN
action clears the WAIT indicator.
ITP447I MSG GEN ENTERED: STMT# 00003 OF DECK TESTMSG
ITP448I MSG GEN ENDED: STMT# 00005 OF DECK TESTMSG
ITP430I OUTPUT IF A (NETWORK IF) NOT MET - ELSE ACTION TAKEN: WAIT INDICATOR SET
ITP424I INPUT IF 0 (TESTMSG 00002) NOT EVALUATED - END OF TEST NOT WITHIN DATA
ITP427I INPUT IF 1 (TESTMSG 00004) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

3. WSim generates MSG3, and the new IF statement 0 overrides the first IF
statement 0. Processing stops on the fourth TEXT statement, and WSim sends
the MSG3. WSim evaluates the message sent against network-level IF statement
A; because WSim does not find an asterisk (*) in the data, it turns the WAIT
indicator on. When the system under tests returns a message, WSim evaluates
the new logic test. Again, WSim finds the data and takes the THEN action.
ITP447I MSG GEN ENTERED: STMT# 00005 OF DECK TESTMSG
ITP448I MSG GEN ENDED: STMT# 00007 OF DECK TESTMSG
ITP430I OUTPUT IF A (NETWORK IF) NOT MET - ELSE ACTION TAKEN: WAIT INDICATOR SET
ITP427I INPUT IF 0 (TESTMSG 00006) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

4. WSim then processes the last TEXT statement. Now, WSim deactivates the
message-level logic test defined by IF statement 0, because it did not specify
STATUS=HOLD. WSim enters MSG4 into the buffer. WSim processes the
ENDTXT statement where message generation stops, and WSim sends MSG4.
WSim then evaluates network-level IF statement A. Because the data includes
an asterisk (*), WSim does not turn on the WAIT indicator.
ITP447I MSG GEN ENTERED: STMT# 00007 OF DECK TESTMSG
ITP448I MSG GEN ENDED: STMT# 00008 OF DECK TESTMSG
ITP426I OUTPUT IF A (NETWORK IF) MET - THEN ACTION NOT CODED

The next time the terminal is ready to generate a message, WSim processes the
deck again.
ITP447I MSG GEN ENTERED: STMT# 00008 OF DECK TESTMSG
ITP449I MSG GEN CONTINUES: DECK TESTMSG STARTED
ITP448I MSG GEN ENDED: STMT# 00003 OF DECK TESTMSG
ITP430I OUTPUT IF A (NETWORK IF) NOT MET - ELSE ACTION TAKEN: WAIT INDICATOR SET
ITP427I INPUT IF 0 (TESTMSG 00002) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

Example of logic testing for a display terminal using
WHEN=IMMED

The example shown below illustrates logic testing for a display device when
WHEN=IMMED. WSim compares the display buffer at a specific location to all the
entries of an input message user table using the $UTBL$ data field option. If the
message received matches one of the input message user table entries, WSim sets a
device index counter to the index of the matching entry. If the message received
does not match any of the input message user table entries, WSim issues a
message to the WSim operator and sets a device index counter to the index of the
error response message entry. The next message generated includes data from a
response message user table, using a device index counter to access the

188 Creating Workload Simulator Scripts

appropriate table entry. Formatted MTRC records produced by the Loglist Utility
follow the step-by-step processing descriptions.

LU2EX NTWRK MSGTRACE=YES
* Sample WSim Script
* This script illustrates logic testing for a display device.
*

0 UTBL (MSG1), Defines input user table; WSim
(MSG2), compares each message received
(MSG3), with the entries in this table.
(MSG5)

1 UTBL (RESPONSE MSG1), Defines response message user
(RESPONSE MSG2), table with response messages
(RESPONSE MSG3), as per messages received in
(RESPONSE MSG5), user table above.
(WHAT?) Error response message.

0 PATH LOOPER Defines path for deck LOOPER.
APPL1 VTAMAPPL
LU1 LU

LOOPER MSGTXT
* Beginning of deck LOOPER.
* STMT #
00001 MSGA TEXT (STARTING) Defines first message.
00002 TOPLOOP ENTER Sets ENTER AID byte.
00003 STOP1 STOP Stops message generation.
00004 0 IF LOC=(24,1), Row 24, column 1 of display.

UTBL=0, Compare to user table entry 0.
UTBLCNTR=DC1, Return user table entry number
COND=EQ, in device index counter.
WHEN=IMMED, Search for equal compare.
ELSE=C-ERROR Call ERROR if not found.

00005 MSGB TEXT ($UTBL,1,CD1$) Pick up next message from the
* response user table using index
* counter 1.
00006 GOTO1 BRANCH LABEL=TOPLOOP Continue in loop.
00007 ERROR WTO (UNEXPECTED), Tell the operator.

(RESPONSE),
(RECEIVED FROM),
(SYSTEM)

00008 SET1 SET DC1=5 Set user table entry number
* for WHAT? message.
00009 RTN1 RETURN Return to caller.
00010 ENDTXT End of deck LOOPER.

Steps:

1. After initializing the network, WSim waits for the host application program to
establish the SNA session with device LU1.

2. Device LU1 enters message generation, and WSim places the message
STARTING into the display buffer. WSim executes the ENTER statement, which
sets the AID byte to indicate an operator pressing the ENTER key. WSim then
executes the STOP statement, stopping message generation before it evaluates
the IF logic test coded with WHEN=IMMED.
ITP447I MSG GEN ENTERED: STMT# 00001 OF DECK LOOPER
ITP448I MSG GEN ENDED: STMT# 00004 OF DECK LOOPER

3. Device LU1 receives one or more response messages. The host application
program unlocks the keyboard after sending the last response message to
device LU1.

4. Device LU1 enters the message generation process. WSim evaluates the IF logic
test coded with WHEN=IMMED, which compares the data in the display buffer
at row 24 column 1 to the data in each entry of user table 0, the input message
user table. If WSim finds a match, it sets device index counter 1 to the index of
the user table entry that matches the data in the display buffer.

Chapter 16. Defining logic tests 189

If WSim does not find a match, WSim calls label ERROR to do the following
actions:
v Issue a WTO to the operator
v Set device index counter 1 to the index of the error response message entry

in user table 1
v Return control to the next statement after the immediate IF, by the RETURN

statement.

WSim executes the TEXT statement and copies the data from the entry
specified by device index counter 1 in user table 1 to the display buffer. WSim
sends RESPONSE MSG1 when it receives MSG1; WSim sends RESPONSE
MSG2 when it receives MSG2, and so on. WSim executes the BRANCH
statement, branching up to label TOPLOOP. Execution of the ENTER statement
sets the AID byte to indicate an operator pressing the ENTER key. Execution of
the STOP statement stops the message generation process before WSim
evaluates the immediate IF logic test. The following MTRC entries demonstrate
both an expected response and an unexpected response.

Note: Steps 3 and 4 are performed until WSim stops the network.

Expected response received
WSim generates the following MTRC records when an expected response is
received:
ITP447I MSG GEN ENTERED: STMT# 00004 OF DECK LOOPER
ITP426I IMMEDIATE IF (LOOPER 00004) MET - THEN ACTION NOT CODED
ITP450I BRANCH FROM STMT# 00006 OF DECK LOOPER TO TOPLOOP AT 00002 OF DECK LOOPER
ITP448I MSG GEN ENDED: STMT# 00004 OF DECK LOOPER

Unexpected response received
WSim generates the following MTRC records when an unexpected response is
received:
ITP447I MSG GEN ENTERED: STMT# 00004 OF DECK LOOPER
ITP430I IMMMEDIATE IF (LOOPER 00004) NOT MET - ELSE ACTION TAKEN:

CALL FROM 00005 OF LOOPER TO ERROR AT 00007 OF LOOPER
ITP452I RETURN FROM STMT# 00009 OF DECK LOOPER TO STMT# 00005 OF DECK LOOPER
ITP450I BRANCH FROM STMT# 00006 OF DECK LOOPER TO TOPLOOP AT 00002 OF DECK LOOPER
ITP448I MSG GEN ENDED: STMT# 00004 OF DECK LOOPER

Note: To see an example of how to preserve the WAIT indicator over
asynchronous IF statements, see “Preserving the WAIT indicator over
asynchronous IF statements” on page 145.

Using logic tests to create self-checking scripts
How do you know that WSim runs your simulation correctly regardless of whether
you simulate one terminal or thousands? Are the simulated terminals actually
sending messages and getting the correct responses in return? If not, you may have
a problem, either in the message generation decks or in the application itself. This
section describes why you need self-checking scripts and how you can use logic
tests to write self-checking scripts that verify whether a terminal session is
proceeding as expected.

The concept of self-checking scripts applies to message generation decks written
manually and those created by the script generating utilities. Test and debug your
decks when you create them. However, this is not always enough to ensure that

190 Creating Workload Simulator Scripts

WSim can handle unexpected situations when running a complex simulation. For
example, the following list indicates problem situations that can occur during an
important simulation run.
v Logon failed. This might be caused by new or expired passwords, too many

users, applications unavailable, routes unavailable, and so on.
v A message from the operator is sent to the simulated VM panel. This causes the

panel to enter the HOLDING state instead of MORE ..., and subsequent
transactions would not be accepted.

v The system has changed since the last WSim run. This can be caused by a
problem related to a data set, a different response message, or authorization
modifications.

v A timing difference exists due to a heavily loaded host processor. Some decks
work fine for many months. However, if the system does not respond fast
enough in one instance, the terminal can send another message causing the
session to be out of synchronization.

Although these are just a few simple, common examples of problems that can arise
during simulation, other problems are also possible. You can create self-checking
scripts to try to guard against these unexpected problems.

Not everyone needs to write self-checking scripts. However, consider the
consequences that might arise if you do not use self-checking scripts. What
happens if you do not notice a simulation problem in a timely manner? If you are
running short and simple simulations, you can probably detect errors yourself
easily. However, if you waste an 8-hour standal-one shift due to terminals getting
out of synchronization, then self-checking scripts could have well been worth the
effort of preparing them. Self-checking scripts can assist you in debugging these
scripts by doing the following:
v Detecting errors sooner than otherwise would be possible
v Detecting errors that otherwise would not be detected.

Determining whether you need self-checking scripts
To help you determine whether you need self-checking scripts to verify your
simulations, you should consider alternative ways of determining whether your
simulations have processed correctly. The following list describes indicators you
can use to track a simulation and provides considerations that may limit their
effectiveness.
v The Log Compare Utility. This utility compares 3270 display (DSPY) records

between two log data sets and provides reports when a difference is detected.
Although the Log Compare Utility can help you determine whether an
application has changed over a period, it requires data from two separate
simulations.

v The Loglist Utility. This utility tells exactly how the simulation ran. Its primary
drawback is that it is run after the simulation is over. In addition, some log lists
can be much too long to read in complete detail. Therefore, problems can still go
undetected.

v Display Monitor Facility. With this facility, you can see the display image or data
stream of a terminal during a simulation run. This facility can be used effectively
to verify simulations involving these terminal types, but might be impractical as
a verification tool if you are simulating large numbers of terminals.

Chapter 16. Defining logic tests 191

v Message Rates. WSim can display send and receive message rates during the
simulation. If they are high and remain stable, that might mean that everything
is fine. However, you cannot be sure that some terminals are not out of
synchronization.

v Query Command Output Data. You can use the Q command to query a terminal
online; however, it is unlikely that you will query your terminal at the exact
instance that a problem occurs.

v Terminal “Hang” Situations. If you even notice a terminal hang situation in the
first place, it can take much more effort to find the cause of the problem and
correct it in a timely fashion.

v Operating System Messages. The operating system console can warn you about
some problems, but it cannot tell you which types.

v Application Program Abnormal Ending. This is a sure sign of a problem, but
more subtle problems can also exist without causing abnormal endings.

Creating self-checking scripts
Self-checking scripts verify whether the expected responses are received from the
system under test. The action taken when WSim finds a problem depends on the
cause of the problem, such as incorrectly written scripts, bugs existing in the
application, or temporary system problems that require a particular sequence of
terminal recovery actions.

After sending a message, self-checking scripts use IF statement logic tests to scan
messages received by the terminal for the expected response. If the response is
correct, the terminal proceeds further. If not, the discrepancy should be noted and
fixed. This sequence is demonstrated in Figure 20.

You can code simple, message-level self-checking scripts, or more complex,
network-level self-checking scripts to recover from errors automatically. As
discussed in the following sections, both types of scripts can save time and find
unexpected problems with your application systems.

Message-Level self-checking scripts
The following example shows a message generation deck that does not include
self-checking logic tests:
DECK5 MSGTXT
* Beginning of DECK5.
MSG1 TEXT (MESSAGE 1) Defines MSG1.
MSG2 TEXT (MESSAGE 2) Defines MSG2.

ENDTXT End of DECK5.

The following example shows the same message generation deck with
self-checking logic built-in to make the system wait for the expected response:

Application

Application

Send Message

Receive Response

Expected response?

Yes - continue

No - call for help!

Figure 20. Self-checking script logic

192 Creating Workload Simulator Scripts

DECK5 MSGTXT
* Beginning of DECK5.
MSG1 TEXT (MESSAGE 1) Defines MSG1.
0 IF LOC=B+0,

TEXT=(REPLY 1),
THEN=CONT

WAIT1 WAIT
MSG2 TEXT (MESSAGE 2) Defines MSG2.
0 IF LOC=B+0, Defines basic logic test.

TEXT=(REPLY 2),
THEN=CONT

WAIT2 WAIT
ENDTXT End of DECK5.

This example demonstrates the most basic form of a self-checking script, using
TEXT-IF-WAIT sequences. However, two drawbacks exist:
v The size of the message generation deck can grow by a factor of three.
v The terminal merely “hangs” if WSim does not receive the expected response.

WSim does not take an error action to alert you or to correct the situation.

As it turns out, these drawbacks are not always serious. Therefore, this basic
method helps you to write self-checking scripts.

Network-Level self-checking scripts
Although the message-level IF statement is a fundamental part of self-checking
scripts, you can code network-level IF statements to enhance the self-checking
qualities of your scripts further and to reduce the size of the TEXT-IF-WAIT blocks
in your message generation decks, as shown in the following example
NET1 NTWRK
* Sample WSim Script
* This script illustrates using network IF statements to reduce the
* size of message generation decks.
*
* Beginning of NET1.
SEND IF LOC=D+0,TEXT=(ANYTHING),

THEN=WAIT,ELSE=WAIT,
WHEN=OUT

RECV IF LOC=D+0,TEXT=RESP,
SCAN=YES,THEN=CONT,
ELSE=CERROR,WHEN=IN

.

. Network definition statements.

.

DECK1 MSGTXT
* Beginning of DECK1.
MSG1 TEXT (MESSAGE 1), Defines MSG1.

RESP=(REPLY 1)
MSG2 TEXT (MESSAGE 2), Defines MSG2.

RESP=(REPLY 2)
.
. Message generation statements.
.
ENDTXT End of DECK1.

ERROR MSGTXT
* Beginning of ERROR deck.

WTO (EXPECTED RESPONSE),
(NOT RECEIVED.),
(PLEASE HELP!) Message to operator.

WAIT1 WAIT
ENDTXT End of ERROR deck.

Chapter 16. Defining logic tests 193

WSim evaluates network-level IF statements SEND and RECV for every message
sent and received by all terminals in the network. The following steps describe the
sequence of events in message generation for the preceding example:

Steps:

1. When WSim sends MSG1, IF statement SEND puts the terminal into a wait
state. The RESP=(REPLY 1) operand on the TEXT statement indicates the
expected response to this request.

2. The terminal waits until WSim receives a message.
3. IF statement RECV checks the message received and determines if the expected

response REPLY 1 exists anywhere in the data stream. If so, THEN=CONT
resets the WAIT indicator and enables the terminal to continue and send MSG2.

4. If the expected response did not exist in the message received, IF statement
RECV causes WSim to take the ELSE=CERROR action. CERROR specifies that
WSim calls (C) the message generation deck named ERROR. This message
generation deck notifies the operator that WSim did not receive the expected
response. In fact, you could have set up this message generation deck to
perform various error recovery actions, relieving the operator of manual
intervention.

When you code IF statements along with message generation statements such as
TEXT, WAIT and WTO, you can create many types of self-checking scripts. The
type of self-checking script you decide to code may depend on the considerations
discussed in the following sections.

Positioning statements to check your scripts
You can enter coding for self-checking scripts at the following positions in a script:
v After you code each message to be generated
v After a complete function.

If you want to check your scripts after each message generated, you can code the
TEXT-IF-WAIT block of statements. This type of self-checking script allows the
most thorough types of checking to be done on a message-by-message basis.

To check your scripts after a complete function, you can place one IF statement
logic test at the end of each message generation deck or logical function that WSim
processes. In this manner, you can check your progress at larger intervals.

Checking for unexpected responses
If you want to check for unexpected responses from the system under test, you can
add WAIT statements and WTO statements to your decks. You can also code IF
statement logic tests that specify actions to be taken when an unexpected response
is received:
v With the WAIT statement, you can simulate a terminal waiting for an expected

message. However, you cannot specify an action to be taken when an
unexpected response is received.

v When you code the WTO statement followed by a WAIT statement, you can
notify the operator about unexpected responses. Then it is up to the operator to
diagnose and correct the problem while the terminal waits.

v If you code the IF statement logic test, you can create message generation decks
that automatically respond to unexpected responses, determine the nature of the
error, and possibly correct the problem. The actions you can specify with the IF
statement offer built-in corrective capabilities.

194 Creating Workload Simulator Scripts

Chapter 17. Understanding control statements

As discussed in Chapter 12, “Basic concepts,” on page 107, the message generation
statements provided with WSim are classified as delimiters, logic tests, and control
statements. Chapter 14, “Understanding delimiters,” on page 137 describes how
delimiters affect the message generation process; Chapter 16, “Defining logic tests,”
on page 165 provides information about coding logic tests. This chapter discusses
control statements, which are message generation statements that control the
message generation process through specific actions and events.

Below lists the message generation statements classified as control statements:

BRANCH
CALC
CALL
CANCEL
DATASAVE
CMxxxx3

DEACT
DELAY
ERROR
EVENT
EXIT

LABEL
LOG
MONITOR
MSGTXT
ON

OPCMND
RESET
RESP
RETURN
RH

SET
SETSW
TH
WTO
WTOABRHD

This chapter provides the following information about control statements and how
they affect the message generation process:
v Coding control statements
v Using control statements for specific devices
v Monitoring and automating the message generation process
v Altering sequential processing
v Controlling switches and counters
v Controlling events.

As discussed in the following sections, with control statements, you can alter
message generation processing and simulate the diverse actions of specific devices.

Coding control statements
This section illustrates how you code control statements in a message generation
deck and helps you understand how control statements affect the message
generation process. The descriptions and coding examples in this section show the
range of actions that can be specified with control statements.

MSGTXT
The MSGTXT statement specifies the beginning of each message generation deck
and the control character and text delimiter you use when coding the deck. As
shown in the following example, the MSGTXT statement also enables you to
control the message generation process when you code the COUNT operand:
DECK1 MSGTXT COUNT=30 WSim processes DECK1 30 times.

3. CMxxxx is a generalized notation used to indicate a category of statements that are used during CPI-C transaction program
simulations. All CPI-C simulation statements are control statements. Refer to WSim Script Guide and Reference for a list and
description of all CPI-C simulation statements.

© Copyright IBM Corp. 1989, 2015 195

With the COUNT operand, you can control how many times WSim processes a
deck in succession before going to the next deck specified on the PATH statement.
In the preceding example, WSim processes DECK1 a total of 30 times.

Note: There are other MSGTXT operands for specific devices. For detailed
information about these operands, see the WSim Script Guide and Reference.

DATASAVE
With the DATASAVE statement, you can save data specified manually or data in a
buffer by placing it in a save or user area. With the TEXT operand of the
DATASAVE statement, you can save data specified manually in hexadecimal or
EBCDIC format or data generated with data field options.

The following example illustrates two DATASAVE statements:
SAVE1 DATASAVE AREA=3,LOC=B+80, Specifies the data to be saved and

LENG=100 the area it is to be saved in.
SAVE2 DATASAVE AREA=U+0, Uses a data field option to generate

TEXT=($ID,8$) data to be saved.

In the preceding example, SAVE1 saves 100 bytes of data at an offset of 80 into the
buffer and places it in device save area number 3. SAVE2 generates the 8-character
name of the terminal associated with this deck and places the name in the device
user area.

If you code the TEXT operand on the DATASAVE statement without specifying
any data, WSim performs a clear function on the area defined by the AREA
operand. For dynamic save areas, the storage associated with the save area is
released for other uses.
SAVEA DATASAVE AREA=5,TEXT=() Specifies that WSim perform a clear
* function on device save area 5.

For more information about the clear function, see the WSim Script Guide and
Reference.

You can retrieve data saved in a save or user area with the $RECALL$ data field
option, as discussed in “Inserting data into a message” on page 134.

CALC
With The CALC statement, you can control the value maintained at a specific
location in a save or a user area. With this statement, you can change the value in
one of the following ways:
v Set a new value
v Add to an existing value
v Subtract from an existing value.

To use the CALC statement, you must first save numeric data with the DATASAVE
statement, as discussed in “DATASAVE.” Then code the CALC statement to
perform a calculation on the data:
ADD1 CALC LOC=N+5,VALUE=+500 Addition calculation.

In the preceding example, LOC=N+5 specifies an offset into the network user area
where WSim performs the calculation. VALUE=+500 specifies that WSim add 500
to the value at the location specified by the LOC operand.

196 Creating Workload Simulator Scripts

To retrieve the new data resulting from this calculation, use the $RECALL$ data
field option as discussed in “Inserting data into a message” on page 134.

Note: The CALC statement operates only on data in hexadecimal EBCDIC format.
For example, use the hexadecimal EBCDIC characters X'F1F2F3' to represent the
decimal number 123 in the save or user area before using the CALC statement to
add to or subtract from the value.

DELAY
The DELAY statement specifies a delay value that WSim uses to calculate a
temporary intermessage delay. The value coded on the DELAY statement overrides
the delay value specified by the DELAY operand on statements such as the TP,
DEV, and LU network definition statements. However, the new delay value
remains active only for the message currently being generated. In this manner, you
can alter the intermessage delay for individual messages.

The following example shows how to code the DELAY statement:
DELAY1 DELAY TIME=100 Specifies a new delay value for the current
* message.

When WSim processes DELAY1, it calculates a new intermessage delay by
multiplying the active user time interval (UTI) for this device by the new delay
value (100).

For more information about intermessage delays and user time intervals, see
Chapter 15, “Understanding intermessage delays,” on page 153. For a complete list
of the network definition statements on which you can code the DELAY operand,
see the WSim Script Guide and Reference.

EXIT
The EXIT statement invokes a user exit routine during message generation,
enabling the exit routine to control message generation with return codes. Code
this statement as shown in the following example:
EXIT6 EXIT MODULE=name Specifies the exit module that gains control
* when WSim processes the statement.

For more information about user exit routines, see WSim User Exits. For more
information about the EXIT statement, see WSim Script Guide and Reference.

CMxxxx
CMxxxx statements are CPI-C verb statements that areused during CPI-C
transaction program simulations. Some CPI-C simulation statements are also
delimiters. See “How delimiters affect the message generation process” on page
137 for a list of the CPI-C delimiters. Refer to WSim Script Guide and Reference for a
list and description of all CPI-C simulation statements.

Using control statements for specific types of devices
When you simulate specific types of devices, you can control the message
generation process with specific control statements. The following sections describe
these statements and provide coding examples.

Chapter 17. Understanding control statements 197

RESET
With RESET statement, you can simulate the action of a RESET key on a display
device. Code this statement as shown in the following example:
RESET5 RESET Simulates action of the RESET key.

WSim recognizes the RESET statement only for 3270 simulations.

ERROR
The ERROR statement performs the following functions during message
generation:
v Provides logical error simulation for 3270 devices
v Generates the SNA sense bytes for an LU2 device.

The ERROR statement specifies the status and sense values to be entered. As
shown in the following example, you must code the value for the STATUS operand
as 4 hexadecimal digits enclosed within single quotation marks:
ERROR1 ERROR STATUS=’xxxx’ Specifies the status and sense values to
* be entered.

WSim recognizes the ERROR statement only for 3270 simulations.

RESP
The RESP statement provides for logical error simulation by SNA devices. It
overrides the normal SNA response with an exception response that contains a
sense value you specify with the SENSE operand.

As shown in the following example, you must code the value for the SENSE
operand as 8 hexadecimal digits enclosed within single quotation marks:
RESP8 RESP SENSE=’xxxxxxxx’ Specifies sense value to be included with
* the exception response.

TH
During SNA simulations, you can use the TH statement to perform the following
functions:
v Modify the SNA transmission header (TH) built by WSim for messages

generated with a TEXT statement
v Build a transmission header for a command defined by a CMND statement.

The following example illustrates coding for the TH statement:
TH2 TH SNF=55 Sets the transmission header sequence number field.

WSim recognizes the TH statement only during SNA simulations.

RH
During SNA simulations, you can use the RH statement to perform the following
functions:
v Modify the SNA request or response header (RH) built by WSim for messages

generated with a TEXT statement
v Build a response header for a command defined by a CMND statement
v Specify chaining of transmitted messages.

The following example illustrates coding for the RH statement:

198 Creating Workload Simulator Scripts

RH5 RH CHAIN=FIRST Specifies that chaining control flags be set in
* the RH.

WSim recognizes the RH statement only during SNA simulations.

Monitoring and automating message generation
In addition to the control statements for specific types of devices, WSim provides
control statements that monitor and automate the message generation process. The
following sections describe these control statements and provide coding examples.

OPCMND
With OPCMND statement, you can automate message generation by specifying an
operator command that WSim issues during the simulation. When WSim processes
the OPCMND statement, it queues the operator command for execution. See WSim
User's Guide for valid operator commands.

As shown in the following example, the data you enter must be in EBCDIC format,
and it must represent a valid operator command:
OPC1 OPCMND (A $NETID$,U=100) Changes the network UTI to 100.
OPC2 OPCMND (A $NETID$,), Alters the message generation

(PATH=((0,1,2,3,4,5), path for all network devices.
(,6,7,8,9,10)))

OPC3 OPCMND (ZEND) Shutdown WSim.

When WSim processes OPC1 and OPC2 during a simulation, it issues the A (Alter)
operator command. OPC1 changes the current network UTI value to 100, and
OPC2 alters the message generation path for all devices in the network.

The $NETID$ data field option coded in the preceding example dynamically
inserts the name field from the current NTWRK statement into the data. See the
WSim Script Guide and Reference for complete information about $NETID$ and other
available data field options.

When WSim processes OPC3 during a simulation, it issues the ZEND command to
stop WSim processing. The ZEND command writes the message log buffers to the
log data set and terminates WSim. See WSim User's Guide for more information on
the ZEND command.

MONITOR
The MONITOR statement causes the Display Monitor Facility to display the
simulated 3270 display image on the display monitoring device:
MNTR23 MONITOR Displays the 3270 display image.

WSim recognizes this statement only during 3270 simulations.

For more information about the Display Monitor Facility, see WSim Utilities Guide.

WTO and WTOABRHD
With the WTO and WTOABRHD statements, you can write informational messages
about the simulation to the operator console during message generation. The WTO
and WTOABRHD statement data fields contain data in the same format as the
TEXT statement data field; you can enter data in hexadecimal format, text strings,
or data generated with data field options. WTOABRHD uses only an abbreviated
header before the data.

Chapter 17. Understanding control statements 199

The following example shows how to write a message to the operator console:
WTO1 WTO ($ID,8$ BEGINNING), Message to the operator console.

(EXECUTION $TOD,8$)

When WSim processes WTO1, it sends the name of the active terminal, the text
“BEGINNING EXECUTION”, and the current time of day to the operator console.

LOG
With LOG statement, you can write data to the log data set. In addition, you can
monitor message generation by writing messages for a terminal to the log data set
during message generation. WSim marks these messages as LOG records in the log
header.

You can log varied information depending on the LOG statement operands you
code:
v The LOG statement data field specifies data entered in hexadecimal format, text

strings, or data generated with data field options for logging.
v The AREA operand enables you to log the contents of save or user areas.
v The DISPLAY operand enables WSim to write the display buffers to the log data

set for formatting by the Loglist Utility.

The following example shows how to code two different LOG statements:
LOG1 LOG ($ID,8$ BEGINNING), Logs terminal name, text BEGINNING

(EXECUTION $TOD,8$) EXECUTION, and time of day.
LOG2 LOG DISPLAY Logs the device display image.

LOG1 sends the name of the active terminal, the text “BEGINNING EXECUTION”,
and the current time of day to the log data set. LOG2 writes the contents of the
simulated display image to the log data set.

For more information about formatting the log data set and controlling message
logging, see WSim Utilities Guide.

Altering sequential processing
WSim usually processes each message generation deck as a complete unit,
processing each statement sequentially before selecting the next deck for
processing. Throughout the message generation process, WSim maintains a
statement pointer for each terminal, which indicates the current position being
processed in the deck. Each time a terminal enters message generation, the
message generation routine uses the saved statement pointer to determine where
to resume processing within the deck. When you modify the statement pointer,
you alter the sequential processing of message generation statements.

You can modify the position of the pointer by coding the BRANCH and CALL
statements and similar actions on IF statements: B (branch) and C (call). You can
code the LABEL and RETURN control statements along with CALL and BRANCH.
The LABEL statement establishes a label in a deck that WSim uses as the location
to go to during a branch or call operation; the RETURN statement returns
processing to the point where the last call was issued.

The following sections describe the BRANCH, CALL, LABEL, and RETURN
statements, including a coding example for each statement. For more information
about the IF statement B (branch) and C (call) actions, see “Coding the THEN and
ELSE operands” on page 173.

200 Creating Workload Simulator Scripts

BRANCH
The BRANCH statement unconditionally changes the sequence of message
generation by specifying either the name of a message generation deck or the
name of a deck and a statement label that identifies the next statement to be
executed. If you want to branch to another statement in your present deck, you
can enter a statement label without specifying the name of the deck.

The following example illustrates the BRANCH statement:
BNCH5 BRANCH NAME=DECK8 WSim branches to and starts processing
* DECK8.
BNCH6 BRANCH NAME=DECK8, WSim branches to and starts processing

LABEL=MSG1 DECK8 beginning with statement MSG1.
BNCH7 BRANCH LABEL=MSG1 WSim branches to statement MSG1 in the
* current deck and continues message
* generation.

Notes:

v The BRANCH statement does not provide a way for WSim to return to the
statement where the branch took place.

v You cannot branch to IF statements that specify WHEN=IN or OUT.

CALL
The CALL statement alters message generation in the same way as the BRANCH
statement does; however, it causes WSim to return to the statement where the call
took place when WSim processes a RETURN or an ENDTXT statement.

The following example illustrates the CALL statement:
CALL5 CALL NAME=DECK4 WSim begins processing DECK4.
CALL6 CALL NAME=DECK4, WSim begins processing DECK4 at statement MSG8.

LABEL=MSG8
CALL7 CALL LABEL=MSG8 WSim begins processing the current deck at
* statement MSG8.

Message generation decks that WSim enters with a branch or call operation are
extensions of the message generation deck from which you issued the branch or
call. This means that WSim does not use the COUNT operand on the new message
generation deck, and any logic tests activated in the calling deck remain active.

For more information about the COUNT operand on the MSGTXT statement, see
“MSGTXT” on page 195.

Note: You cannot call IF statements that specify WHEN=IN or OUT.

LABEL
As shown in the following example, you use the LABEL statement to establish a
label that WSim uses as the object of a branch or call operation:
name LABEL Specifies a name for WSim to use during branch
* and call operations.

Note: You can also branch or call to the labels you code in a message generation
statement's name field, except for IF statements that specify WHEN=IN or
WHEN=OUT. You cannot branch or call to IF statements coded with these
operands.

Chapter 17. Understanding control statements 201

RETURN
When you code the RETURN statement, WSim restarts message generation at the
point where the last CALL statement appeared or the last C (call) action on a logic
test was issued.

The following example illustrates the RETURN statement:
RETURN1 RETURN WSim returns to the point of the last CALL
* statement or action.

Notes:

v WSim ignores the RETURN statement if no CALL statement or action is active.
v The ENDTXT statement acts as a RETURN statement if a CALL statement is

active when it is processed by WSim.

Setting switches and counters
WSim maintains counters and switches for each network, terminal, and device. The
following sections describe setting counters and switches with the SETSW and SET
control statements. For more information about switches and counters, see
“Sequence and index counters” on page 125 and the WSim Script Guide and
Reference.

SETSW
With the SETSW statement, you can set or clear any or all of the switches you
defined for a network or a terminal. WSim provides 4095 switches at the network
level that any terminal in the network can access. In addition, each terminal
capable of message generation has 4095 switches that can be used by that terminal
only. You use these switches to indicate certain conditions and then test the
switches with IF statement logic tests.

The following example shows how to set the fourth device switch-on for a
terminal:
SETSW1 SETSW SW4=ON Sets the 4th device switch on.

Note: The only values that you can code for a switch are ON and OFF.

SET
You can alter the values of sequence and index counters with the SET message
generation statement. With SET statement, you can set a counter to the following
values:
v A specific integer, a random number, or the value of another counter
v A value resulting from multiplying or dividing the values of two counters or the

value of a counter and a constant
v The remainder that results from dividing the values of two counters or the value

of a counter and a constant
v Hexadecimal data saved in a user or save area
v The length of data in a user or save area
v The numeric value of EBCDIC data saved in a user or save area
v The index of the last UTBL item
v The cursor's row, column, or offset
v The number of rows or columns on a display screen.

202 Creating Workload Simulator Scripts

You can also use counters to position the cursor with the CURSOR and SELECT
message generation statements. For more information about these statements, see
Chapter 18, “Generating messages for specific types of devices,” on page 219. In
addition, you can set a counter to the offset of the text that satisfies the logic test
when you code a logic test with the SCANCNTR operand. For more information
about this operand, see “Coding the SCANCNTR operand” on page 179.

To code the SET statement, enter the name of the counter and an option that
specifies how WSim sets the counter's value:
SETCNTR SET cntr=option Coding required for the SET statement.

You can code the name of a valid counter for cntr. Because a simulated VTAM
application and its logical units do not have lines or terminals associated with
them, WSim provides counters for those resources differently. The following list
presents the names you can code for cntr and the counters that WSim provides for
VTAMAPPLs and LUs:

NSEQ Network sequence counter.

LSEQ Line sequence counter. WSim provides one line sequence counter for each
VTAMAPPL.

TSEQ Terminal sequence counter. WSim provides one terminal sequence counter
for each VTAMAPPL.

DSEQ Device sequence counter. WSim provides one device sequence counter for
each VTAMAPPL LU half-session.

NCn Network index counter n.

LCn Line index counter n. WSim provides 3 - 4095 line index counters for each
VTAMAPPL.

TCn Terminal index counter n. WSim provides 3 - 4095 terminal index counters
for each VTAMAPPL.

DCn Device index counter n. WSim provides 3 - 4095 device index counters for
each VTAMAPPL LU half-session.

Table 10 illustrates which counters WSim allocates for each resource simulated by
WSim:

Table 10. How counters are allocated for resources

Simulation Type LSEQ LC1 - LCn TSEQ TC1 - TCn DSEQ DC1 - DCn

CPI-C TP

APPCLU

TP

X

XNote 1 XNote 2

VTAM Application

VTAMAPPL

LU

X X

X

TCP/IP Connection

TCPIP

DEV

X X

X

Notes:

1. This set of counters is available to all instances of a given CPI-C transaction program.

2. This set of counters is unique for each CPI-C transaction program instance.

Chapter 17. Understanding control statements 203

You can code several different values for option, some of which are described in
following sections. For a complete list of the values you can code, see the WSim
Script Guide and Reference.

As shown in the following example, you must code at least one operand on the
SET statement:
SET1 SET TSEQ=+5 Adds 5 to the value of the terminal sequence counter.

With SET statement, you can alter multiple counters in a single statement. As
shown in the following example, you can code one SET statement to increment the
device sequence counter by 10, set the line sequence counter to the same value as
network counter 5, and set device index counter 2 to a random number 10 - 100:
SETCNTR SET DSEQ=+10,LSEQ=NC5,DC2=(10,100) Sets counters.

The following sections describe how to set the value of a counter with the SET
statement.

Setting a counter to a specific value or random number
With the following options, you can set a counter to specific values or random
numbers:

integer Sets the counter to the specified integer. integer is an integer from 0 to
2147483647.
SET1 SET NC2=3 Sets network index counter 2 to 3.

cntr Sets the counter to the specified counter.
SET1 SET DC3=NSEQ Sets device index counter 3 to the value in
* the network sequence counter.

(lo,hi) Sets the counter to a random number between lo and hi, where lo and hi
are integers between 0 and 2147483647 or counter specifications whose
values are within this range. lo must be less than hi.
SET1 SET LC1=(1,100) Sets line index counter 1 to a random number
* from 1 to 100.

RNn Sets the counter to a random number in the range specified by the RN
statement with label n, where n is an integer between 0 and 255.
1 RN LOW=1,HIGH=50 Random number between 1 and 50....
SET1 SET TC5=RN1 Sets terminal index counter 5 to a random
* number specified by RN statement 1.

Setting a counter with arithmetic operations
With the following options, you can set a counter to the result of a multiplication,
addition, subtraction, or division procedure:

*integer Sets the counter to the product of its own value and the value specified by
integer. integer is an integer from 1 to 2147483647. WSim wraps the value of the
counter after reaching 2147483647.

SET1 SET TC1=2, Sets terminal index counter 1 to 2.
TC1=*5 WSim multiplies the value of terminal index

* counter 1 (2) by 5 and sets the value of
* terminal index counter 1 to the product (10).

204 Creating Workload Simulator Scripts

+integer Sets the counter to the sum of its own value and the value specified by integer.
integer is an integer from 1 to 2147483647. WSim wraps the value of the counter
after reaching 2147483647.

SET1 SET LC1=8 Sets line index counter 1 to 8.
SET2 SET LC1=+5 WSim adds 5 to the value of terminal index
* counter 1 (8) and sets the value of
* terminal index counter 1 to the sum (13).

-integer Sets the counter to the difference of its own value and the value specified by
integer. integer is an integer from 1 to 2147483647. WSim wraps the value of the
counter to 2147483647 after reaching 0.

SET1 SET DC3=5, Sets device index counter 3 to 5.
DC3=-1 WSim subtracts 1 from the value of device

* counter 3 (5) and sets the value of
* device index counter 3 to the difference (4).

/integer Divides the value of the counter by integer and sets the counter to the quotient.
integer is an integer from 1 to 2147483647.

SET1 SET NSEQ=11 Sets the network sequence counter to 11.
SET2 SET NSEQ=/2 WSim divides the value of the network
* sequence counter (11) by 2 and sets the
* network sequence counter to the quotient (5).

//integer Divides the value of the counter by integer and sets the counter's value to the
remainder. integer is an integer from 1 to 2147483647.

SET1 SET TC8=33 Sets the terminal index counter 8 to 33.
SET2 SET TC8=//9 WSim divides the value of terminal index
* counter 8 (33) by 9 and sets the value of
* terminal index counter 8 to the
* remainder (6).

*scntr Sets the counter to the product of its own value and the value of scntr. WSim
wraps the value of the counter after reaching 2147483647.

SET1 SET TC1=4, Sets terminal index counter 1 to 4.
NSEQ=10 Sets the network sequence counter to 10.

SET2 SET TC1=*NSEQ WSim multiplies the value of terminal index
* counter 1 (4) by the value of the network
* sequence counter (10) and sets the value of
* terminal index counter 1 to the product (40).

+scntr Sets the counter to the sum of its own value and the value of scntr. WSim
wraps the value of the counter after reaching 2147483647.

SET1 SET LC1=2, Sets line index counter 1 to 2.
NSEQ=15 Sets the network sequence counter to 15.

SET2 SET LC1=+NSEQ WSim adds the value of line index
* counter 1 (2) to the value of the network
* sequence counter (15) and sets the value of
* line index counter 1 to the sum (17).

-scntr Sets the counter to the difference between its own value and the value of scntr.
WSim wraps the value of the counter to 2147483647 after reaching 0.

SET1 SET DC1=20, Sets device index counter 1 to 20.
DSEQ=9 Sets the network sequence counter to 9.

SET2 SET DC1=-DSEQ WSim subtracts the value of device sequence
* counter (9) from the value of the device
* index counter (20) and sets the value of
* device index counter 1 to the difference (11).

Chapter 17. Understanding control statements 205

/scntr Divides the value of the counter by the value of scntr and sets the counter's
value to the quotient. If you attempt to divide by 0, the counter's value does
not change, and WSim logs message ITP4681 indicating the reason for the
failure to set the counter's value.

SET1 SET NSEQ=13, Sets the network sequence counter to 13.
LSEQ=3 Sets the line sequence counter to 3.

SET2 SET NSEQ=/LSEQ WSim divides value of the network sequence
* counter (13) by the value of LSEQ (3) and
* sets the network sequence counter to the
* quotient (4).

//scntr Divides the value of the counter by the value of scntr and sets the counter's
value to the remainder. If you attempt to divide by 0, the counter's value does
not change, and WSim logs message ITP4681 indicating the reason for the
failure to set the counter's value.

SET1 SET TC2=25, Sets terminal index counter 2 to 25.
NC9=7 Sets network index counter 9 to 7.

SET2 SET TC2=//NC9 WSim divides the value of terminal index
* counter 2 (25) by the value of network index
* counter 9 (7) and sets the value of terminal
* index counter 2 to the remainder (4).

Setting a counter to hexadecimal data
To set the value of a counter to hexadecimal data in a save or user area, you can
code CNTR=(X,loc,leng) on the SET statement. With this operand, WSim places 1 -
4 bytes of data into the counter without translating the data.

You can code the following values on this operand:

X Specifies that the data in the save or user area is hexadecimal data.

loc Specifies the location of the data, including the save or user area and the
offset, if any. If the specified location does not exist, WSim logs message
ITP468I and does not set the counter's value.

You code one of the following values for loc:

B±value
Specifies that the data is at an offset from the start of the data in
the device buffer, excluding headers, (+value) or back from the end
of the data in the buffer (-value) for nondisplay devices. For display
devices, B-value specifies that the data is located at an offset back
from the end of the data in the screen image buffer. value is an
integer 0 - 32766 or the name of a valid counter.

C±value
Specifies that the data is at an offset from the current cursor
position (+value) or back from the current cursor position (-value).
Code this value only for display devices. value is an integer 0 -
32766 or the name of a valid counter.

N±value
Specifies that the data is at an offset from the start (+value) or the
back from the end (-value) of the network user area. value is an
integer 0 - 32766 or the name of a valid counter.

Ns+value
Specifies that the data is located at offset value from the start of
network save area s. s is an integer 1 - 4095. value is an integer
from 0 to 32766 or the name of a valid counter.

206 Creating Workload Simulator Scripts

(row,col)
Specifies the row and column location of the data. row and col may
be integers 1 - 255 or the names of valid counters.

s+value
Specifies that the data is at offset value from the start of save area s.
s is an integer 1 - 4095. value is an integer from 0 to 32766 or the
name of a valid counter.

U±value
Specifies that the data is at an offset from the start (+value) or back
from the end (-value) of the device user area. value is an integer 0 -
32766 or the name of a valid counter.

Note: If you specify a counter as the offset value, WSim evaluates that
counter when it processes the SET statement and uses the counter's value
as the offset. If the value is greater than 31999 for save and user areas or
greater than 32766 for all other locations, WSim logs message ITP468
indicating that the value is invalid as an offset and that the counter's value
was not set.

leng Specifies the length of the data. leng is 1 - 4, indicating that the data is 1 - 4
bytes in length. If you specify 2 or more and fewer bytes of data exists at
the specified location, WSim sets the value to only the existing bytes of
data.

In the following example, the network user area has a 1-byte field representing the
length of the data, followed by a device name. This can be saved with the
following hexadecimal data.
DATASAVE AREA=N+0,TEXT=(’08C4C5E5C9C3C5F0F1’)

You can set a counter's value equal to the first byte by coding the SET statement as
shown in the following example:
SET5 SET DC1=(X,N+0,1) WSim sets the value of device counter 1 to the
* hexadecimal data located in the network user
* area at a 0 offset and 1 byte in length.

Setting a counter to the length of user or save area data
To set the value of a counter to the length of data in a user or save area, you can
code the CNTR=LENG(N]U]Ns]s) operand on the SET statement.

You can code one of the following values for the LENG operand:

N Sets the counter to the current length of the network user area.

U Sets the counter to the current length of the device user area.

Ns Sets the counter to the current length of the data in network save area s,
where s can be an integer 1 - 4095.

s Sets the counter to the current length of the data in save area s, where s
can be an integer 1 - 4095.

Setting a counter to EBCDIC data
To set the value of a counter to EBCDIC data, you can code CNTR=(E,loc,leng) on
the SET statement. When you code this operand, WSim sets the counter to the
numeric value of a 1- to 10-byte EBCDIC number in a user or save area.

You can code the following values on this operand:

Chapter 17. Understanding control statements 207

E Specifies that the data located in the save or user area is EBCDIC data.

loc Specifies the location of the data, including the save or user area and the
offset, if any. If the specified location does not exist, WSim logs message
ITP468I and does not set the counter's value. For a list of the values you
can code for loc, see “Setting a counter to hexadecimal data” on page 206.

leng Specifies the length of the numeric field. WSim treats leading, nonnumeric
characters such as blanks or alphabetic characters as zeros. WSim truncates
trailing, nonnumeric characters. If WSim does not find numeric characters
within the specified text or if the numeric field's value is greater than
2147483647, it logs message ITP468I and does not change the counter's
value. If leng is longer than the data at the specified location, WSim uses
the available data.

Table 11 illustrates the relationship between leng, the EBCDIC data, and the value
WSim assigns to the counter:

Table 11. How EBCDIC data is assigned to a counter

leng EBCDIC Data Counter Value Explanation

5 “12345” 12345 All numeric data transferred

5 “0345” 345 All numeric data transferred

4 “ 234 ” 234 Leading blank treated as a zero

5 “$2.45” 2 Translation ends at first nonnumeric character

1 “$234” None No numeric data within limits of leng

10 “2147483700” None Numeric data too large

2 “234” 23 Numeric data longer than leng

5 “123” 123 Numeric data shorter than leng

Setting a counter to the cursor's row, column, or offset
When you simulate display devices, with the following options, you can set the
value of a counter to the row number, column number, or offset of the cursor:

CROW Sets the counter to the current row number of the cursor. The value returned by
CROW is the actual row number on the panel, regardless of whether you are
simulating a display device with multiple partitions.

CCOL Sets the counter to the current column number of the cursor. The value returned
by CCOL is the actual column number on the panel, regardless of whether you
are simulating a display device with multiple partitions.

COFF Sets the counter to the current offset of the cursor. When you simulate a 3290 or
8775 display device with multiple partitions defined, the offset returned by
COFF represents the cursor offset from the beginning of the presentation space
of the currently active partition.

Note: These options are valid only for display devices. If you specify them for
nondisplay devices, WSim does not alter the value of the counter. In addition,
WSim logs message ITP468I indicating that the reason for the failure was a cursor
reference for a nondisplay device.

The following statements set three counters to a current cursor position of row 17,
column 46:

208 Creating Workload Simulator Scripts

SET1 SET DC1=CROW Sets device counter 1 to the current row
* position (17).
SET2 SET NSEQ=CCOL Sets the network sequence counter to the current
* column position (46).
SET3 SET LC9=COFF Sets line index counter 9 to the current offset
* (1325), assuming the display is 80 columns wide.

Setting a counter to the number of rows or columns in a display
You can set the value of a counter to the number of rows or columns in a display
screen by coding the NUMROWS or NUMCOLS operand on the SET statement.
Coding NUMROWS sets the counter to the number of rows on the simulated
display device; coding NUMCOLS sets the counter to the number of columns.

Note: These options are valid only for display devices. If you specify them for
nondisplay devices, WSim does not alter the value of the counter. In addition,
WSim logs message ITP468I indicating that the reason for the failure was a cursor
reference for a nondisplay device.

Setting a counter to the index of the last item in a user table
You can also set the value of a counter to the index of the last item in a user table
with the UTBLMAX(utblname) operand on the SET statement. utblname specifies the
name of an MSGUTBL or the label of a UTBL network definition statement.

Controlling events
As discussed in “The WAIT statement” on page 140, the EVENT=event operand on
the WAIT statement names an event that WSim must post before further messages
can be generated. To create and control the events that synchronize communication
between simulated resources, you can code the following control statements:
v EVENT
v CANCEL
v ON
v DEACT
v DATASAVE.

In addition, with the WAIT/POST facility and the ON/SIGNAL facility, you can
simulate two or more terminals interacting in a single transaction or a master
terminal controlling a network. Both facilities use events to control and
synchronize the communication between terminals.

The following sections describe each statement and facility; “Using events to
synchronize multiple devices” on page 216 provides examples of using events to
create complex simulations.

EVENT
The EVENT statement performs a post, reset, or signal action for the named event,
depending on the operand you code. In addition, you can specify a tag, which is a
name that identifies one or more EVENT statements that may be referenced by a
CANCEL statement.

POST=event
Specifies the name of an event to be posted.

QSIGNAL=event
Specifies the name of an event to be signaled. This operand signals the
named event only for the resource that issued the QSIGNAL.

Chapter 17. Understanding control statements 209

RESET=event
Specifies the name of an event to be reset to not posted.

SIGNAL=event
Specifies the name of an event to be signaled.

EVENTTAG=tag
Specifies a name that can be referenced by a CANCEL statement to cancel
the action specified by the POST, QSIGNAL, RESET, or SIGNAL operands.
For more information about the EVENTTAG operand and canceling an
event, see “CANCEL” on page 211.

TIME=value
Specifies the number of seconds WSim delays the action specified by this
EVENT statement. value is an integer 1 - 21474836 or the name of a valid
counter.

event is the name of an event that you specify manually or dynamically with data
you retrieve from a save or user area. For more information about generating event
names with user and save areas, see “Coding variable event names with the
DATASAVE statement” on page 212. When you code EVENT=event on a WAIT
statement, WSim inhibits message generation until the named event is posted. To
post an event, code the POST operand on the EVENT statement, as shown in the
following example:
EVENT7 EVENT POST=READY Specifies that WSim post event READY.

When you code the RESET operand on the EVENT statement, you can specify the
name of an event that is to be reset:
EVENT8 EVENT RESET=READY, Specifies that WSim reset event READY to
* TIME=15 not posted following a 15-second delay.

Note: The TIME operand specifies a number of seconds WSim delays before
taking the action specified on the EVENT statement. If you do not code the TIME
operand, the specified action occurs immediately.

When WSim signals an event, it satisfies all ON conditions for the named event
throughout the network. Thus, one signal operation can affect many ON
statements and many different terminals.

The following example shows how to code the SIGNAL operand:
EVENT5 EVENT SIGNAL=READY Signals event READY for all network ON
* statements that specify event READY.

The QSIGNAL, or qualified signal, operand on the EVENT statement performs the
same action as the SIGNAL operand. With the QSIGNAL operand, however, WSim
signals the event only for the terminal that issued the QSIGNAL. No other
terminals in the network is affected. When you code the QSIGNAL operand, you
can use identical event names for all devices in a network. In this way, all network
devices can use one common message generation deck without unique event
names.

The following example shows how to code a qualified signal action using the
QSIGNAL operand on the EVENT statement:
EVENT1 EVENT QSIGNAL=READY Signals event READY for the device issuing
* the EVENT statement.

210 Creating Workload Simulator Scripts

Note: You can use the SIGNAL operand of the A (Alter) operator command to
signal an event in a network. You cannot use the A (Alter) operator command to
issue a qualified signal, since the QSIGNAL operand must be associated with a
device and not a network.

CANCEL
When you code the EVENTTAG operand on both the CANCEL and EVENT
statements, you can control events by canceling several event actions with one
statement. The EVENTTAG=tag operand on the CANCEL statement enables you to
cancel POST, SIGNAL, RESET, and QSIGNAL actions on all EVENT statements
named tag. However, the EVENT statements must be coded with TIME=value, and
the specified amount of time cannot have elapsed.

In the following example, EVENT1 specifies that WSim is to signal event
SNOWFALL after a 5-second delay. In addition, the EVENTTAG operand specifies
the tag STORM. CANCEL1 cancels the event actions on any EVENT statement
tagged STORM, if the specified delay has not elapsed.
EVENT1 EVENT SIGNAL=SNOWFALL, Signal event SNOWFALL following

TIME=5,EVENTTAG=STORM a 5-second delay.
.
. Message generation statements.
.

CANCEL1 CANCEL EVENTTAG=STORM Cancels event SNOWFALL if the
* 5-second delay has not expired.

If the 5-second delay has not elapsed when WSim processes CANCEL1, it cancels
the signal action specified by EVENT1.

The following example illustrates how the CANCEL statement selectively cancels
EVENT statements depending on their tag and whether the TIME operand has
been coded:
EVENT1 EVENT POST=RAIN,TIME=15, Posts event RAIN following a

EVENTTAG=WEATHER 15-second delay.
EVENT2 EVENT RESET=SNOW,TIME=10, Resets event SNOW following a

EVENTTAG=WEATHER 10-second delay.
EVENT3 EVENT SIGNAL=SLEET,TIME=25, Signals event SLEET following

EVENTTAG=STORM a 25-second delay.
EVENT4 EVENT QSIGNAL=HAIL Signals event HAIL immediately
* for the active device only.

.

. Message generation statements.

.
CANCEL5 CANCEL EVENTTAG=WEATHER Cancels all EVENT statements
* with the TAG WEATHER and coded
* with TIME=value.

In the preceding example, CANCEL5 cancels the event actions specified by
EVENT1 and EVENT2, if the specified delays have not elapsed. CANCEL5 does
not cancel the action specified by EVENT3 because it is tagged STORM instead of
WEATHER. In addition, CANCEL5 does not cancel the action specified by
EVENT4 because the TIME and the EVENTTAG operands were not specified.

For more information about coding the EVENTTAG operand on the event
statement, see “EVENT” on page 209.

Chapter 17. Understanding control statements 211

ON
With the ON statement, you specify the name of an event and an action to be
taken when the named event is signaled by an EVENT statement. The ON
statement's EVENT operand specifies the name of the event; the THEN operand
specifies the action to be taken.

Note: You must code both the EVENT and THEN operands when you code the
ON statement.

The actions specified on the THEN operand are identical to actions you can specify
on the IF statement THEN and ELSE operands. For more information about these
actions, see “Coding the THEN and ELSE operands” on page 173.

The following example illustrates how you code the ON statement:
ON3 ON EVENT=ERROR,THEN=BDECK5 Specifies an event and an action.

ON3 specifies that when event ERROR is signaled, any device that processes this
ON statement will branch to and begin processing DECK5. If a device encounters
an ON statement that specifies the same event and action as another ON statement
active in the same terminal, the device ignores the new statement.

Note: To generate names for events with user and save areas, see “Coding variable
event names with the DATASAVE statement”

For complete information about coding the ON statement, see the WSim Script
Guide and Reference.

DEACT
The DEACT statement controls message generation by deactivating IF statement
logic tests or ON statements, depending on the operand you code:

ONEVENTS=(event,event...)│ALL
Selectively or globally deactivates ON conditions before normal
deactivation, that is, after WSim completes the action specified by the ON
statement.

IFS=(num,num...)│ALL
Selectively or globally deactivates message generation logic tests before the
time that WSim normally deactivates such tests.

To explicitly deactivate an ON statement, code the ONEVENTS operand on the
DEACT statement, as shown in the following example:
DEACT1 DEACT ONEVENTS=(READY) Explicitly deactivates ON statements
* that specify event READY.

In the preceding example, the DEACT statement deactivates all ON statements that
specify event READY before WSim would normally deactivate the ON statements.

For information about deactivating logic tests with the DEACT statement, see
“Deactivating logic tests” on page 181.

Coding variable event names with the DATASAVE statement
In addition to coding event names directly on the EVENT and ON statement, you
can generate or change event names dynamically during the simulation. To
generate event names dynamically, you retrieve an event name from a save area or

212 Creating Workload Simulator Scripts

user area. In this way, the device can store or change the name in the save area or
user area at any time, and any device in the network can change names in the
network save and user areas.

For all message generation statements that specify an event name, you can code a
save or user area with one of the following operand values. value is an integer 0 -
32766 or the name of a valid counter.

N±value
Specifies an event name referenced at an offset from the start (+value) or
back from the end (-value) of the network user area.

Ns+value
Specifies an event name referenced at an offset from the start of a network
save area. s is an integer from 1 to 4095.

s+value
Specifies an event name referenced at an offset from the start of the device
save area. s is an integer from 1 to 4095.

U±value
Specifies an event name referenced at an offset from the start (+value) or
back from the end (-value) of a device user area.

When you define an event name in this manner, WSim takes the first 8 bytes of
data beginning at the specified offset as the event name. If the area contains less
than 8 bytes of data, WSim pads the name on the right with blanks. If the area
does not exist or contains no data, WSim uses a name consisting of 8 blanks. WSim
does not check the validity of the event name, which means you can generate a
name that cannot be expressed as EBCDIC characters.

The following example shows how you can save and access a variable event name:
SAVE1 DATASAVE AREA=N+0, Saves name in network user area.

TEXT=(EVENT1)
.
. Message generation statements.
.

WAIT1 WAIT EVENT=N+0 Waits until EVENT1 is posted.

In the preceding example, WSim places the name EVENT1 into the network user
area. When WSim processes the WAIT statement, the terminal waits until EVENT1
is posted.

In the following example, WSim places the text EVENT2 into the device save area
3. When WSim processes ON1, it retrieves EVENT2 from the device save area 3
and uses it as the event name.
SAVE1 DATASAVE AREA=3, Saves event name.

TEXT=(EVENT2)
.
. Message generation statements.
.

ON1 ON EVENT=3+0, Specifies event name from device save
THEN=B-LABEL area 3 and an action to be taken when

* the event is signaled.

For more information about the DATASAVE statement, see “DATASAVE” on page
196.

Chapter 17. Understanding control statements 213

Controlling communications with events
In WSim, you can control communication among devices by managing events with
the WAIT/POST and the ON/SIGNAL facilities. The WAIT/POST facility allows a
terminal to wait until an event is posted. With the ON/SIGNAL facility, a terminal
activates an asynchronous condition that WSim deactivates by signaling an event.

These two facilities are independent of one another. For example, posting an event
has no affect on outstanding ON/SIGNAL conditions, even if the named event is
identical for both conditions.

The following sections provide complete descriptions of each facility.

WAIT/POST facility
With the WAIT/POST facility, you direct a simulated resource to wait until an
event is posted. As discussed in “EVENT” on page 209, events may be posted by
the same terminal waiting on the event, by another terminal, or by the operator.
The following example shows how to code the EVENT statement to post an event:
EVENT1 EVENT POST=READY Posts event READY.

The WAIT/POST facility involves WAIT and POST actions. For example, WSim
can process a WAIT statement that specifies an event name during message
generation or logic testing. After processing the statement, WSim cannot generate
any further messages for that resource until the named event is posted. You can
also cause a terminal to wait on an event by coding the EVENT operand on the
WAIT message generation statement. When WSim processes this statement and
operand, it does not generate any further messages for that terminal until the
named event is posted.

At times, more than one terminal might be waiting on the same event or a single
terminal might be waiting on multiple events. In fact, the meshing of events and
terminals waiting on those events can be simulated in any combination you want.

Before a terminal can generate any further messages, all events on which it is
waiting must be posted. When one event is posted, that terminal is no longer
waiting on that event. After WSim posts all events that a terminal is waiting on,
the wait is over, even if one event is reset before the others are posted.

After WSim posts an event, the event remains posted until explicitly reset. If WSim
processes a WAIT statement when the named event is already posted, the terminal
does not have to wait until the event is again posted. Note, however, that the
WAIT statement still serves as a delimiter for message generation regardless of the
completion of the event specified. If the event is already posted, the terminal can
continue generating messages.

You can test for the completion of an event using a logic test. For example, test an
event with an immediate logic test and then generate a message if the event is
posted or issue a wait on that event if it is not posted.

WSim maintains ON conditions, that is, the condition of waiting on events to be
signaled with an EVENT statement, independently from the standard conditions
set by the WAIT indicators. For example, actions that turn off the WAIT indicator,
such as taking a THEN=CONT action on a logic test, do not turn off the EVENT
WAIT indicator. It must be turned off by posting the event. When WSim turns both
of these indicators on, you must turn both off before WSim can generate additional

214 Creating Workload Simulator Scripts

messages. You can also enter commands from the console or use automatic
terminal recovery to turn off the EVENT WAIT indicator and the WAIT indicator.

Note: You can use the A (Alter) operator command to post and reset named events
in a network; see WSim User's Guide for more information about this command.
For more information about the WAIT and WAIT EVENT indicators, see
“Interrupting message generation with unconditional delimiters” on page 139.

ON/SIGNAL facility
When you use the ON/SIGNAL facility, you activate an asynchronous condition
that is satisfied when WSim signals an event. WSim performs the action associated
with the condition immediately after the condition is signaled. As discussed in
“EVENT” on page 209, you signal an event with the SIGNAL operand on the
event statement:
EVENT5 EVENT SIGNAL=READY Signals event READY.

Using the ON/SIGNAL facility, you simulate communication among terminals in
different ways from the WAIT/POST facility. This facility uses the ON statement to
set up the action to be taken when WSim signals an event. As discussed in “ON”
on page 212, you can use any of the actions specified on the THEN and ELSE
operands of the IF statement. After signaling the event, WSim takes the specified
action, and the ON condition is no longer active. If you want the ON condition to
remain active, code a second, identical ON statement in a deck that WSim
processes after taking an action specified by the first statement.

When WSim signals an event, it does not affect any EVENT WAIT conditions that
may have specified the same event name, nor does posting an event activate an
ON condition. WSim maintains the two facilities separately even though both can
specify the same event names. An ON condition must be active when WSim
signals an event in order to be affected by the signal. Earlier signals of the same
event have no effect on an ON condition activated after these signals.

After signaling an event, WSim triggers all active ON conditions specifying that
event and queues their actions for execution. If multiple ON conditions specifying
the same event are active for a single terminal, WSim can take multiple actions for
a terminal as a result of a single signal. After WSim queues all actions, it executes
these actions immediately. Since the actions can include additional signals, WSim
adds actions specified by ON conditions for these signals to the queue and
executes them in turn. WSim completes all actions in the queue before any further
processing occurs.

For example, if terminal A signals an event for which terminal B has an active ON
statement, WSim takes the action specified by terminal B's ON statement before
continuing message generation for terminal A. Some of the possible actions that
can result from an event being signaled are a call or branch, which may change
statement pointers; an execute action, which may specify executing a block of
message generation statements; or possibly the signaling of another event.

For more information about the execute action, which is specified by E (Execute)
on THEN and ELSE operands on an IF statement, see “E (Execute)” on page 175.

Note: WSim deactivates ON conditions automatically after completing the
specified action. You can also explicitly deactivate an ON statement before it is
signaled with the ONEVENTS operand of the DEACT statement. For more
information about the DEACT statement, see “DEACT” on page 212.

Chapter 17. Understanding control statements 215

Using events to synchronize multiple devices
The following example demonstrates how you can use events to synchronize the
message generation process across multiple devices. In this example, two message
generation decks are processed by different devices: device LU1 processes
DECKLU1 and device LU2 processes DECKLU2. When WSim processes these
decks, device LU1 selects an order number from a data base and stores the number
in the network user area at offset zero. Device LU2 then processes that order
number.
DECKLU1 MSGTXT
* Sample Message Generation Decks
* These message generation decks use events to synchronize
* message generation for multiple devices.
*
* Beginning of deck for LU1.

.

. Message generation statements.

.
SAVE1 DATASAVE AREA=N+0, Generates random number for a

TEXT=($RNUM,1,9999,4) part number and places it into
* the network user area.
EVENT1 EVENT POST=LU2EVENT Posts event LU2EVENT.
WAIT1 WAIT EVENT=LU1EVENT Interrupts message generation
* for LU1 until event LU1EVENT is
* posted.
EVENT2 EVENT RESET=LU1EVENT Resets event LU1EVENT.

ENDTXT End of DECKLU1.

*
DECKLU2 MSGTXT
* Beginning of deck for LU2.
WAITA WAIT EVENT=LU2EVENT Interrupts message generation
* for LU2 until event LU2EVENT is
* posted.
EVENTA EVENT RESET=LU2EVENT Resets event LU2EVENT.
MSG1 TEXT (ORDER PART), Generates message with data

(NUMBER), retrieved from network user area.
($RECALL,N+0$)

EVENTB EVENT POST=LU1EVENT Posts event LU1EVENT.
.
. Message generation statements.
.
ENDTXT

The following steps describe how WSim processes these decks during message
generation.

Steps:

1. When WSim processes DECKLU1, it places the part number into the network
user area at a zero offset, and then processes EVENT1, posting event
LU2EVENT. WSim then issues a wait for LU1EVENT and interrupts message
generation for LU1.

2. The first time LU2 enters message generation, WSim issues a wait for
LU2EVENT, interrupting message generation for LU2 until LU1 posts this
event.

3. Because LU1 posted event LU2EVENT, LU2 can reenter message generation
when all conditions for message generation have been satisfied. WSim
processes EVENTA, which resets event LU2EVENT. The next time WSim
processes DECKLU2, LU2 can wait for event LU2EVENT again. WSim
continues processing DECKLU2, retrieving the part number from the network

216 Creating Workload Simulator Scripts

user area and generating MSG1. After processing the part number, WSim posts
event LU1EVENT, which enables LU1 to reenter message generation.

4. Because LU2 posted event LU1EVENT, LU1 can reenter message generation
when all conditions for message generation have been satisfied. WSim
processes EVENT2, which resets event LU1EVENT. The next time WSim
processes DECKLU1, LU1 can wait on event LU1EVENT again. LU1 starts the
process again by saving another part number, and the preceding steps are
repeated.

Chapter 17. Understanding control statements 217

218 Creating Workload Simulator Scripts

Chapter 18. Generating messages for specific types of
devices

This chapter discusses message generation requirements for specific types of
devices. WithWSim, you can simulate a number of different devices attached to
your simulated network. So that WSim can represent the activities of a real
network effectively, you should code message generation decks that accurately
reflect the type of data the real terminal sends. By following the special coding
requirements for the devices discussed in this chapter, you can create message
generation decks that provide appropriate simulations of the data sent by these
devices.

The first part of this chapter discusses the factors you should consider when
simulating display devices. A sample message generation deck is provided to help
you understand how message generation proceeds for a display device. The
chapter then discusses the factors you should consider when simulating SNA
devices and the data field options you can use to indicate certain types of
information for specific devices.

The remaining sections in this chapter discuss individual coding requirements for
the following devices:
v IBM 3270 Information Display System
v IBM 5250 Display System

For other device-specific considerations, particularly for CPI-C, FTP, and Simple
TCP and UDP simulations, refer to Part 1, “Defining WSim networks,” on page 1.

Generating messages for display terminals
In general, WSim does not perform any operations on the data stream of a
terminal after completing the line control processing required to transmit or receive
a message. However, for 3270 and 5250 (LU7) display terminals, WSim performs
full buffer simulation by maintaining in storage an image of the display screen for
the terminal. For received messages, WSim interprets the commands and data
stream orders for these terminals and automatically updates the screen image as
required. For transmitted messages, WSim automatically builds the correct data
stream from the buffer image.

WSim provides several message generation statements that are valid for display
terminals only. Most of these statements represent keys that an operator strikes at a
terminal. These key simulation statements are listed in “How delimiters are
classified” on page 138 under the item “Delimiters for Specific Simulated Devices”.

Message generation for a display terminal continues until the attention identifier
(AID) is set and a subsequent delimiter statement is encountered. When one of the
key simulation statements is encountered during message generation and the AID
has not been set for the terminal, the statement is processed as a control statement
and message generation continues until a delimiter statement is encountered.

© Copyright IBM Corp. 1989, 2015 219

If the AID has already been set when a key simulation statement is encountered,
the key simulation statement itself acts as a delimiter that interrupts message
generation. It is not processed until the next pass through message generation for
the terminal.

WSim maintains the position of the cursor for a display terminal. When you
specify data to be entered in the terminal buffer with a TEXT statement, the data is
entered by WSim at the current cursor position. You can move the cursor without
entering data by using the cursor positioning statements such as BTAB, CTAB,
CURSOR, TAB, and HOME. If you move the cursor in this manner, WSim assumes
that more data is to be entered into the buffer; data from a subsequent TEXT
statement is placed in the buffer without sending any data already in the buffer to
the system under test.

If you code two consecutive TEXT statements for a display terminal, WSim
assumes that an ENTER statement (for 3270 and 5250) is between them. The first
TEXT statement puts data into the terminal buffer, the implied ENTER or SEND
sets the AID, and the second TEXT statement acts as a delimiter and ends the
current pass through message generation.

INPUT INHIBITED indicator
For the 3270 and LU2 display terminals, WSim maintains an INPUT INHIBITED
indicator. Like the WAIT, QUIESCE, and EVENT WAIT indicators, the INPUT
INHIBITED indicator must be in the Reset (off) state before you can generate a
message for one of these terminals. Whenever a message is generated, the INPUT
INHIBITED indicator is set. WSim resets the INPUT INHIBITED indicator when
any of the following conditions occur:
v A keyboard unlock command sequence is received.
v The intermessage delay expires.
v An S (Start) operator command is executed.
v A BIND for LU2 terminal is received.
v An end bracket for LU2 terminal running an LU2 session is received.
v A RESET statement is executed.
v Automatic terminal recovery is performed.
v Console recovery mode is entered.
v A console recovery subcommand is entered.

Simulating the enter and tab keys
Use the ENTER and TAB statements to simulate the actions of the Enter and Tab
keys on display devices.

ENTER Use the ENTER statement to simulate the actions of the Enter key. Although
WSim automatically generates an Enter AID, it does so only if no other AID
byte has been set at the time. For example, program function (PF) keys, and
program attention (PA) keys can also be used to set AID bytes. Use the ENTER
statement to simplify the understanding and readability of message generation
decks. It is generally coded following the TEXT statement that is to be entered.

TAB Use the TAB statement to simulate the action of the Tab key. The TAB statement
is useful for tabbing from one input field on the panel to the next on full-screen
menus. Its most important use is to concatenate two or more individual TEXT
statements in a message generation deck so that the first TEXT is not
transmitted when the second TEXT is encountered. This statement is commonly
used in IMS, CICS, and TSO simulations.

220 Creating Workload Simulator Scripts

To visualize the functions of the Enter and Tab statements, consider entering data
in the TSO logon screen shown in Figure 21. The message generation deck fills in
all applicable fields before it simulates pressing the Enter key. The following
example shows the message generation deck that simulates these actions. The
TEXT statements are concatenated with the TAB statement, which also moves the
cursor to the next unprotected field. Without the TAB statements, the TEXT
statements would be transmitted one at a time, causing TSO to continue to prompt
the user for required fields.

When all necessary fields were entered, the screen looks like the one shown in
Figure 22 on page 222. Then the deck simulates pressing the Enter key to transmit
the data.

TSOLOG MSGTXT
TEXT (PASSWD) Enter password.
TAB Tab to procedure field.
TEXT (WSIM) Enter procedure name.
EREOF Erase last part of "GENERAL."
TAB Tab to account field.
TAB Tab to size field.
TEXT (4096) Enter size.
ENTER Now press the Enter key.
ENDTXT Delimiter - transmit data.

Note that in Figure 21, the cursor is at the start of the PASSWORD field before
entering message generation. The TAB statements move the cursor from one field
to the next after the data is typed. Note that if the cursor automatically skips to the
next field while you are typing (such as if an 8-character password is entered), a
TAB is not necessary after that TEXT statement.

Figure 22 on page 222 shows the same panel after data entry.

------------------------------ TIME SHARING OPTION ----------------------

PF1/PF13 ==> HELP PF3/PF15 ==> LOGOFF PA1 ==> ATTENTION PA2 ==> RESHOW
YOU MAY REQUEST SPECIFIC HELP INFORMATION BY ENTERING A ’?’ IN ANY FIELD.

ENTER LOGON PARAMETERS BELOW:

USERID ===> WSIM1

PASSWORD ===> (<-- cursor at password field)

PROCEDURE ===> GENERAL

ACCT NMBR ===>

SIZE ===> 2048

PERFORM ===>

COMMAND ===>

ENTER AN ’S’ BEFORE EACH OPTION DESIRED BELOW:

-NOMAIL -NONOTICE -RECONNECT

Figure 21. TSO logon panel before data entry

Chapter 18. Generating messages for specific types of devices 221

Following message generation for a display terminal
The following example illustrates the message generation process for a 3270
synchronous data link control (SDLC) terminal using sample message generation
trace (MTRC) records and a listing produced by the Preprocessor. Each step WSim
takes during message generation is described using the corresponding numbers on
the MTRC records and the message generation decks on the Preprocessor listing.

For more information about MTRC records and the Preprocessor, see WSim Utilities
Guide.
NET3270 NTWRK INIT=SEC,UTI=100,MSGTRACE=YES
*
* Sample 3270 Network Definition
*
1 PATH ECHO3270
010021 LINE PATH=(1),FRSTTXT=LOGON,TYPE=3270
TERM211 TERM ADDR=C1
DEV2111 DEV

STMT#
*
* LOGON message deck:
*

LOGON MSGTXT
00001 DELAY TIME=30
00002 TEXT (LOGON APPLID((NEWAPPL)))
00003 SYSREQ
00004 ENDTXT

*
* ECHO message deck:
*

ECHO3270 MSGTXT
00001 TEXT (SEND FIRST TEST MESSAGE)
00002 TEXT (THIS MESSAGE WILL)
00003 CURSOR ROW=1,COLUMN=19
00004 TEXT (BE CONCATENATED TOGETHER)

------------------------------ TIME SHARING OPTION ----------------------

PF1/PF13 ==> HELP PF3/PF15 ==> LOGOFF PA1 ==> ATTENTION PA2 ==> RESHOW
YOU MAY REQUEST SPECIFIC HELP INFORMATION BY ENTERING A ’?’ IN ANY FIELD.

ENTER LOGON PARAMETERS BELOW:

USERID ===> WSIM1

PASSWORD ===> (password is invisible)

PROCEDURE ===> WSIM

ACCT NMBR ===>

SIZE ===> 4096

PERFORM ===>

COMMAND ===>

ENTER AN ’S’ BEFORE EACH OPTION DESIRED BELOW:

-NOMAIL -NONOTICE -RECONNECT

Figure 22. TSO logon panel after data entry

222 Creating Workload Simulator Scripts

00005 TEXT (THIS TEXT IS SENT SEPARATELY)
00006 PF1
00007 TEXT (SHOW TAB KEY)
00008 TAB
00009 TEXT (PROCESSING)
00010 CURSOR
00011 ENTER
00012 ENDTXT

Steps:

1. During initial start, the LOGON message generation deck is chosen from the
FRSTTXT operand. The DELAY statement is processed and processing stops at
the TEXT statement. No message is generated.
ITP447I MSG GEN ENTERED: STMT# 00001 OF DECK LOGON
ITP448I MSG GEN ENDED: STMT# 00002 OF DECK LOGON

2. When the delay has expired and a poll is received, message generation
continues at the TEXT statement. The data is placed in the device buffer and
processing continues to the next delimiter. The SYSREQ statement is
encountered. For 3270 SDLC, this statement sets the terminal AID to the same
value that a real terminal would set for the TESTREQ key. Since the AID was
not set before the SYSREQ statement, processing continues to the ENDTXT
statement. Message generation stops and the message is transmitted.
ITP447I MSG GEN ENTERED: STMT# 00002 OF DECK LOGON
ITP448I MSG GEN ENDED: STMT# 00004 OF DECK LOGON

3. Message generation continues with the selection of another message generation
deck (ECHO3270) from the specified PATH. The first TEXT statement is
processed and message generation stops at the second TEXT statement. The
first message is now transmitted. Since no 3270 key has been processed, the
message is automatically sent as if the Enter key has been pressed by the
terminal operator. The same processing would occur if an ENTER statement
were placed between the two TEXT statements.
ITP447I MSG GEN ENTERED: STMT# 00004 OF DECK LOGON
ITP449I MSG GEN CONTINUES: DECK ECHO3270 STARTED
ITP448I MSG GEN ENDED: STMT# 00002 OF DECK ECHO3270

4. Message generation continues at the second TEXT statement. The data is placed
in the buffer at the current cursor position (assumed in this case to be the first
buffer position). The cursor is set to the position indicated by the CURSOR
statement. This CURSOR statement indicates that more data is to be entered
into the buffer before a message is transmitted. Instead of stopping message
generation at the following TEXT statement, that TEXT statement is also
processed and the data is entered into the buffer. Processing continues to the
fourth TEXT statement in the deck, then stops. The message in the buffer is
transmitted. In this example, the message transmitted reads: THIS MESSAGE
WILL BE CONCATENATED TOGETHER.
ITP447I MSG GEN ENTERED: STMT# 00002 OF DECK ECHO3270
ITP448I MSG GEN ENDED: STMT# 00005 OF DECK ECHO3270

5. When message generation continues, the next TEXT statement (THIS TEXT IS
SENT SEPARATELY) is processed, and the data is entered into the buffer. The
PF1 key is then processed, and the device AID is set as it would be if the
terminal operator pressed the PF1 key. The processing routine then detects the
next TEXT statement and processing stops. The message is transmitted.
ITP447I MSG GEN ENTERED: STMT# 00005 OF DECK ECHO3270
ITP448I MSG GEN ENDED: STMT# 00007 OF DECK ECHO3270

6. When message generation continues, the next TEXT statement (SHOW TAB
KEY) is the current deck position. The data is placed in the device buffer and
processing continues. The TAB statement is processed much the same as the

Chapter 18. Generating messages for specific types of devices 223

CURSOR statement; the current cursor position changes, and the generation
routine assumes that more data is to be entered at the new position.
When the next TEXT statement is processed, that data is also entered in the
buffer and processing continues to the next delimiter. The CURSOR statement
sets the cursor back to the first buffer position. When the ENTER statement is
encountered, the AID byte is set and processing continues. When the ENDTXT
is encountered, the previously generated message is transmitted with the Enter
key AID.
ITP447I MSG GEN ENTERED: STMT# 00007 OF DECK ECHO3270
ITP448I MSG GEN ENDED: STMT# 00012 OF DECK ECHO3270

7. When the message generation routine is entered again, another message
generation deck is chosen from the PATH statement. Since the PATH statement
contains only the deck named ECHO3270, processing continues through the
ECHO3270 deck again.
ITP447I MSG GEN ENTERED: STMT# 00012 OF DECK ECHO3270
ITP449I MSG GEN CONTINUES: DECK ECHO3270 STARTED
ITP448I MSG GEN ENDED: STMT# 00002 OF DECK ECHO3270

Generating messages for SNA terminals
This section discusses how you can modify SNA messages by altering the default
SNA headers built by WSim, controlling chaining of messages, and specifying SNA
or user commands. It discusses how to code message generation decks to initiate
sessions for SNA terminals and how to generate unsolicited SNA data from
simulated physical units, such as communication controllers and terminal control
units.

Modifying SNA messages
To modify SNA messages transmitted by your simulated devices, you can use the
TH statement to alter the SNA transmission header, the RH statement to control
the chaining of messages, and the CMND statement to send SNA or user
commands to the system under test.

TH statement
Use the TH statement to modify the SNA transmission header for a message
generated by a TEXT statement or a command generated by a CMND statement.
You can use the TH statement to set the sequence number field in the transmission
header. Code the TH statement following the message generation deck statement
that builds the message.

RH statement
Use the RH statement to control the chaining of a transmitted message, as shown
in the following example:
CHAINS MSGTXT

TEXT (FIRST DATA)
RH CHAIN=FIRST,EXC=ON
TEXT (MORE DATA)
TEXT (EVEN MORE DATA)
TEXT (LAST DATA)
RH CHAIN=LAST,EXC=OFF
TEXT (ONLY DATA)
ENDTXT

When the message generation deck is processed for a logical unit, the first message
sent is a first-in-chain RU. The next two RUs transmitted for the logical unit are
marked as middle-in-chain. If you omit the RH statement and a first-in-chain RU

224 Creating Workload Simulator Scripts

has been sent for a logical unit, WSim automatically sends subsequent RUs as
middle-in-chain. The next message is transmitted as a last-in-chain RU that
requests a definite response from the test system. WSim does not generate another
message for the logical unit until the response is received. The last message
generated from this message generation deck is sent as an only-in-chain RU.

When CHAINING=AUTO is specified in the DEV or LU definition for a
non-display SNA device, WSim automatically performs the chaining operation on
the message generation text data using the maximum RU size value from the
BIND. WSim can use BUFSIZE operand values up to 32767 during the message
generation process.

The following example shows how to use the automatic chaining support. In the
example, assume that CHAINING=AUTO, BUFSIZE=32767, and the maximum RU
size value in the BIND is 256.
AUTOC MSGTXT
TEXT1 TEXT (MESSAGE 1),LENG=5000
TEXT2 TEXT (MESSAGE 2A),LENG=5000
RH1 RH CHAIN=FIRST
TEXT3 TEXT (MESSAGE 2B),LENG=5000
RH2 RH CHAIN=MIDDLE
TEXT4 TEXT (MESSAGE 2C),LENG=32767
RH3 RH CHAIN=LAST

ENDTXT

In this example, WSim processes the message generation deck as follows:

Steps:

1. The first TEXT statement builds a 5000-byte message into the terminal output
buffer. The message is passed to any output logic test as an only-in-chain RU.
The automatic chaining process takes the message and divides it into 256-byte
chain elements. The chain is sent as a single first-in-chain element, multiple
middle-in-chain elements, and a single last-in-chain element. When used with
the RH statement, the automatic chaining process can generate a large chain.

2. The next three TEXT and RH statements generate a large chain using multiple
passes through the message generation process. The second TEXT statement
builds a 5000-byte message into the terminal output buffer. The first RH
statement sets the first-in-chain indicator. The message is passed to the logic
test as a first-in-chain RU. The automatic chaining process takes the message
and divides it into 256-byte chain elements. A single first-in-chain element is
sent, followed by multiple middle-in-chain elements.

3. The third TEXT statement builds a 5000-byte message into the terminal output
buffer. The second RH statement sets the middle-in-chain indicator. The
message is passed to the logic test as a middle-in-chain RU. The automatic
chaining process takes the message and divides it into 256-byte chain elements.
Multiple middle-in-chain elements are sent.

4. The fourth TEXT statement builds a 32767-byte message into the terminal
output buffer. The third RH statement sets the last-in-chain indicator. The
message is passed to the logic test as a last-in-chain RU. The automatic
chaining process takes the message and divides it into 256-byte chain elements.
Multiple middle-in-chain elements are sent, followed by a single last-in-chain
element.

CMND statement
Use the CMND statement to specify an SNA or user command to be sent by a
logical unit to the system under test. WSim builds default SNA headers for the

Chapter 18. Generating messages for specific types of devices 225

command, but you can modify the headers with the TH and RH statements. The
following example shows how to use the CMND statement to generate an
INIT-SELF command.
CMNDDECK MSGTXT

CMND COMMAND=INIT,
MODE=LOGLU0,
RESOURCE=APPL1,
DATA=($ID,8$/PASSWORD),
URC=($ID,8$)

ENDTXT

The following example demonstrates how to use the CMND statement to build a
SIGNAL command:
CMND COMMAND=SIGNAL,SENSE=’00010000’ SNA attention key (SIGNAL).

The CMND statement can be used to generate asynchronous SNA data flows.
When the CMND statement is the next statement in a message generation deck,
the CMND statement is executed, even if the normal requirements for entering
message generation have not been met. The following example demonstrates how
to use this asynchronous message generation capability:
SLU MSGTXT
* Send SNA signal when a chain of data is received which
* does not allow the terminal to send the next message.
*
0 IF LOC=RH+0,TEXT=’80’,THEN=SW1(OFF), SNA request and

ELSE=SW1(ON)
1 IF LOC=RH+0,TEXT=’40’,THEN=SW1(OFF) FM ...
2 IF LOC=RH+0,TEXT=’20’,THEN=SW1(OFF) ... data and
3 IF LOC=RH+0,TEXT=’01’,ELSE=SW1(OFF) end of chain and
4 IF LOC=RH+2,TEXT=’40’,THEN=SW1(OFF) not end bracket and
5 IF LOC=RH+2,TEXT=’20’,THEN=SW1(OFF) not change direction.
6 IF LOC=SW1,THEN=C-SIGNAL Generate SNA signal.
WAITING WAIT

BRANCH LABEL=WAITING
SIGNAL CMND COMMAND=SIGNAL,SENSE=’00010000’ SNA attention key.

WTO (SIGNAL SENT)
RETURN
ENDTXT

In this example, if the simulated device receives a chain of data that does not allow
the device to transmit a following message (for example, change direction is not
received and end bracket is not received), the device sends an asynchronous
SIGNAL command.

Two operands of the CMND statement (MODE and RESOURCE) accept variable
names that can be dynamically generated or changed during the simulation. These
variable names can be stored in and retrieved from save and user areas. Any
device in the network can change the names in the network user area. You can use
the DATASAVE statement to alter the contents of a save area or user area.

You can specify the name of the save or user area and reference an offset with one
of the following operand values:
v N±value

v Ns+value

v s+value

v U±value

N indicates the network user area, Ns is the number of a network save area, s is
the number of a device save area, and U indicates a device user area. value is the

226 Creating Workload Simulator Scripts

offset into the area. When you define a name in this manner, the first 8 bytes of
data, beginning at the specified offset, are taken as the name. If the area does not
exist or if no data is present, a name of eight blanks is used. No validity checking
is performed on the name; therefore, you can use a name that cannot be expressed
as EBCDIC characters.

For the network and device user area, the name must be padded with blanks in
your coding if the length is less than eight.

The following example demonstrates how you can use DATASAVE to place
WSIMLU2 into the network user area. A session can then be established for
WSIMLU2.
SAVE1 DATASAVE AREA=N+0,TEXT=(WSIMLU2)
CMND1 CMND COMMAND=INIT,RESOURCE=N+0

In the following example, LU11 is placed into the device user area. A session can
then be established for LU11.
SAVE5 DATASAVE AREA=U+0,TEXT=(LU11)
CMND5 CMND COMMAND=INIT,RESOURCE=U+0

In the following example, the first name from user table 1 is placed into the
network user area.
SAVE3 DATASAVE AREA=N+0,TEXT=($UTBL,1,0$)
CMND3 CMND COMMAND=INIT2,RESOURCE=N+0

In this user table, the luname should be coded as follows:
1 UTBL (LU11)

In the following example, WSIMLU2 is placed into device save area 1. A session
can then be established for WSIMLU2.
SAVE8 DATASAVE AREA=1+0,TEXT=(WSIMLU2)
CMND8 CMND COMMAND=INIT,RESOURCE=1+0

The following example demonstrates that the first name from user table 1 is placed
into device save area 2. A session is then established.
SAVE9 DATASAVE AREA=2,TEXT=($UTBL,1,0$)
CMND9 CMND COMMAND=INIT2,RESOURCE=2+0

Simulating errors in SNA devices
You can simulate SNA terminal errors by using the following statements or
operand:
v RESP statement
v RESP operand on the IF statement
v TH statement
v RH statement
v CMND statement.

RESP statement
Use the RESP statement to cause WSim to send an exception response to the next
request received instead of the response that would normally be sent. The RU
portion of the response is composed of the SNA and user sense bytes specified by
the SENSE operand, as shown in the following example.

Chapter 18. Generating messages for specific types of devices 227

TSTRESP MSGTXT
RESP SENSE=’10030000’
TEXT (MSG1)
ENDTXT

In this example, when the first request is received from the system under test after
transmitting MSG1, the SNA terminal responds with sense data specifying that the
function is not supported.

RESP operand on the IF statement
Normally, WSim sends an SNA response to a received request. However, you can
use the RESP=NO operand on an IF statement to prevent WSim from sending this
response when the request is tested. Instead, WSim builds the TH and RH for the
normal response and enters message generation to allow the user to supply the RU
data and modify the headers. Use the TEXT statement to generate the RU portion
of the response. The following example shows how you can reject a message that
WSim would not normally reject.
DECK6 MSGTXT

.

.

.
TEXT1 TEXT (INQUIRY)
0 IF LOC=B+30,TEXT=(DATA),

THEN=CERROR1,RESP=NO,
ELSE=CONT,TYPE=3277

.

.

.
ENDTXT

ERROR1 MSGTXT
TEXT2 TEXT (’00001234’) User SENSE data.

RH EXC=ON,SNI=ON
ENDTXT

In the preceding example, assume that buffer position 30 of the data reply to the
message generated by TEXT1 is DATA, which satisfies the logic test condition and
causes the THEN action to be taken. Message generation deck ERROR1 is called.
Since RESP=NO is coded on the 0 IF statement, WSim builds the SNA response
from the TEXT2 statement. An exception response is generated with sense data of
X'00001234'.

TH statement
Use the TH statement to change the sequence number field in the transmission
header that WSim transmits for requests and responses. The error condition that
you can create is an invalid FID2 sequence number. The message MSG1 is
transmitted with an invalid sequence number that must be detected by the system
under test.

RH statement
Use the RH statement to change fields in the request or response header that
WSim transmits. The error conditions that you can create include invalid chaining
sequence, bracket protocol error, invalid response type (DR1, DR2, EXC), and
incorrect RU type (FM, DFC, NC, SC).
TSTRH MSGTXT

TEXT (MSG1)
RH CHAIN=FIRST
TEXT (MSG2)
RH CHAIN=FIRST
ENDTXT

228 Creating Workload Simulator Scripts

The preceding example causes WSim to transmit two consecutive first-in-chain
RUs.

CMND statement
Use the CMND statement to generate SNA commands and send them to the
system under test. You can send SNA sense data along with the LUSTAT and
SIGNAL commands.
TSTCMND MSGTXT

CMND COMMAND=LUSTAT,SENSE=’08020000’
ENDTXT

The above CMND statement causes an LUSTAT command to be transmitted with
sense data indicating that intervention is required at the logical unit.

Initiating sessions for SNA terminals
When INIT=SEC is coded in the network definition for a simulated SNA terminal,
the terminal sends an INIT-SELF command to the system under test requesting a
session with an application named in the RESOURCE operand of the definition.
You can also initiate the session by coding a CMND statement that generates a
formatted INIT-SELF command. The following message generation deck causes a
terminal to generate an INIT-SELF command that contains a resource name of RES
and a logon mode table entry name of BATCH. The terminal does not continue in
message generation until the terminal receives an SDT command.
LOGINIT MSGTXT

CMND COMMAND=INIT,RESOURCE=RES,MODE=BATCH
ENDTXT

If your test system processes unformatted system services (USS) requests, you can
code a SYSREQ statement followed by a TEXT statement containing a logon
message for the SLU. In the following example, the DELAY statement causes
different start delays when multiple terminals reference the message generation
deck to generate their logon messages. The SYSREQ statement places the terminal
in the SSCP-LU session state. The TEXT statement generates the logon message.
The WAIT statement stops message generation and sets the WAIT indicator for the
terminal. The logon message is transmitted and the terminal WAIT indicator
remains set until the terminal receives a BIND command.
LOGON MSGTXT

DELAY TIME=A20
0 IF LOC=RU+0,TEXT=(ANYTHING),

ELSE=B-NOSYSREQ
SYSREQ

NOSYSREQ TEXT (LOGON APPLID((TSO)) USER(($ID,8$/PASSWORD)))
WAIT
ENDTXT

IBM 3270 Information Display System
WSim simulates a 3270 terminal by maintaining an updated buffer or screen image
for the terminal. The buffer can be modified by generated messages or by
messages received from the system under test. For a message generated by a
simulated 3270 terminal, WSim builds the message from the current state of the
terminal buffer including any necessary orders in the data stream to be
transmitted. For a received message, all commands and orders other than 3270
printer orders are processed and the terminal buffer is updated accordingly. WSim
automatically maintains attribute bytes in the buffer that define different display or
data entry fields.

Chapter 18. Generating messages for specific types of devices 229

For a complete list of the IBM 3270 components WSim can simulate, see Part 1,
“Defining WSim networks,” on page 1.

Generating messages
WSim can generate messages for simulated 3270 terminals that represent display
devices. No messages are generated for 3270 printers by normal message
generation. A simulated 3270 display terminal generates a message if all of the
following conditions are met:
v A poll sequence has been received.
v The intermessage delay has expired.
v The logical WAIT indicator is not set.
v The terminal WAIT EVENT indicator is not set.
v A status message is not pending.
v The INPUT INHIBITED indicator is not set.
v The terminal is not in the quiesce state.
v The terminal is not in the console recovery state.

The INPUT INHIBITED indicator for a terminal is set whenever a message is
generated. No additional normal messages can be generated for the terminal until
the indicator is reset. For a list of conditions that cause WSim to reset the INPUT
INHIBITED indicator, see “INPUT INHIBITED indicator” on page 220.

A message generated by the statements in a message generation deck is treated as
data entered at a 3270 display keyboard. This data is used to modify the screen
image buffer for the terminal according to the current cursor location and the
attribute bytes in the buffer. If you attempt to enter data into a display field that
has the protected attribute, the data is ignored and an informational message is
written to the log data set.

After a message is generated, WSim scans the terminal's screen image buffer and
constructs the data stream to be transmitted to the system under test, including
headers, addresses, the attention identifier (AID), and orders. For 3270 SNA, the
data is transmitted in RU chain elements according to the value that you code for
BUFSIZE.

For Telnet 3270, the data is transmitted in blocks according to the value that you
code for BUFSIZE.

Using the RESET statement
The RESET statement is valid for 3270 terminals only and is ignored for other
terminal types. The RESET statement sets the AID for the terminal to a null value
and resets the INPUT INHIBITED indicator. The RESET statement also resets insert
mode set by the INSERT statement, as discussed in “Simulating the insert and
delete keys” on page 231.

You use the RESET statement primarily as the response to an IF statement E
(Execute) action. For example, if a 3270 terminal normally enters a logoff message
and the application sends a response without unlocking the terminal keyboard,
you can use an IF statement to identify the response and execute a RESET
statement to reset the keyboard so that the terminal can continue in message
generation. This sequence is demonstrated in the following example.

NTWRK
.
.

230 Creating Workload Simulator Scripts

.
IF LOC=D+0,TEXT=(LOGGED OFF),SCAN=YES,THEN=ERESET

.

.

.
RESET MSGTXT

RESET
ENDTXT

When encountered during normal message generation, the RESET statement
functions like other 3270 key simulation statements. If the AID byte has already
been set when a RESET statement is encountered, message generation stops and
the generated message is transmitted. If the AID byte has not been set, the RESET
statement is processed but is effectively ignored since the AID byte is already null
and the INPUT INHIBITED indicator is already reset. The RESET statement does
not concatenate TEXT data as do statements such as CURSOR and TAB.

Once message generation is entered for a 3270 terminal, the processing of message
generation statements normally continues until data is entered into the terminal
buffer and the AID byte is set. You can use the CLEAR, ENTER, PAn, PFn, and
SELECT statements to set the AID byte. The SELECT statement may or may not set
the AID byte depending on the character selected. If the character selected is
detectable and the designator character for the field selected is valid, one of the
following actions is taken:
v If the designator character is “?”, the modified data tag (MDT) bit for the field is

set and the designator character is changed to “>”.
v If the designator character is “>”, the MDT bit for the field is reset and the

designator character is changed to “?”.
v If the designator character is a blank or null, the MDT bit for the field is set and

the selector pen AID is set.
v If the designator character is “&”, the MDT bit for the field is set and the Enter

AID is set.

Simulating the insert and delete keys
Use the INSERT and DELETE statements to simulate the actions of the 3270 Insert
and Delete keys. The INSERT statement puts the simulated 3270 display into insert
mode. In insert mode, data on the simulated screen is shifted to the right as the
TEXT data is inserted. By ending message generation or using the RESET
statement, you can reset insert mode. If there are not enough nulls at the end of a
screen row to satisfy the insertion requirements, log message ITP470I is generated.

Use DELETE CHARS=n to delete n characters from the simulated screen. The
value of n can range 1 - 255 and can be a counter value.

Simulating cursor movement
The CURSOR statement simulates the action of the cursor positioning keys on a
display device. Use the following operands on the CURSOR statement during 3270
and 5250 simulations:

UP=value
Moves the cursor up the specified number of lines. value is an integer 1 -
255 or the name of a counter set to a valid value.

DOWN=value
Moves the cursor down the specified number of lines. value is an integer 1
- 255 or the name of a counter set to a valid value.

Chapter 18. Generating messages for specific types of devices 231

LEFT=value
Moves the cursor left the specified number of positions. value is an integer
1 - 255 or the name of a counter set to a valid value.

RIGHT=value
Moves the cursor right the specified number of positions. value is an
integer 1 - 255 or the name of a counter set to a valid value.

COLUMN=value
Moves the cursor to the specified column. value is an integer 1 - 255 or the
name of a counter set to a valid value.

ROW=value
Moves the cursor to the specified row. value is an integer 1 - 255 or the
name of a counter set to a valid value.

OFFSET=value
Specifies the position of the cursor as an offset from the beginning of the
display buffer. For a 3270 simulation with multiple partitions defined, this
operand specifies the cursor offset from the beginning of the presentation
space of the currently active partition. value is an integer 0 - 32766 or the
name of a counter set to a valid value.

3270 key options
The following list describes the data field options that enable you to simulate
certain keys on 3270 devices. These options are ignored for device types other than
3270. In addition, the following data field options are valid only in the TEXT
statement data field.

FM Simulates the action of the 3270 Field Mark key. Each time this option is
detected, a Field Mark character is entered into the buffer.

NL Simulates the action of the 3270 New Line key. The cursor is set to the first
unprotected character location of the next line. If no unprotected fields
exist, the cursor is set to character location zero. If the display contains no
fields, the cursor is set to the first position of the next line.

TAB Simulates the action of the 3270 Tab key. The cursor is moved to the first
byte of the next unprotected field.

Simulating the 3274 local clear key
The LCLEAR statement simulates the Local Clear key on a display device. It clears
the display of a simulated 3270 terminal, but will not transmit a Clear AID to the
host. For a detailed description of the LCLEAR statement, see the WSim Script
Guide and Reference.

Logic testing
You can use the IF statement to perform logic tests for 3270 terminals on two
different forms of the data. You can specify a logic test in a terminal's screen image
buffer by coding the B+, B-, C+, C-, or (row,col) location options on an IF statement.
This type of logic test operates on the data as it would be displayed at a real
terminal. Since bits 0 and 1 of attribute bytes are always zero in the screen image
buffer, you can test bits 2 through 7 of an attribute byte using one of the above
location options. All logic tests on a screen image buffer are performed after the
buffer has been modified according to the message generated or data received. If a
received message contains invalid commands or orders, the screen image buffer is
not modified, but any active logic tests are still performed.

232 Creating Workload Simulator Scripts

You can specify a logic test on an incoming or outgoing data stream, including
headers, commands, and orders, by coding the D+, TH+, RH+, or RU+ location
option on an IF statement. The TH+, RH+, and RU+ options are valid only for
3270 SNA terminals. You can use one of these options to perform a logic test on a
start field (SF) order and its following attribute byte.

See “Logic test examples” on page 186 for scripts coded with logic tests.

Simulating errors in an LU2 terminal
Use the RESP and ERROR statements to cause WSim to send an exception
response to the next request received instead of the response that would normally
be sent. For LU2 terminals, the RESP statement specifies the SNA sense and user
sense bytes that will be sent. For an LU2 terminal, the ERROR statement sets the
user sense bytes to X'0000' and the SNA sense to X'1003' for command reject or
X'1005' for any other error.

Simulating printers
WSim enters message generation for a start delay and allows you to activate IF
statements to send printer status information. WSim also generates appropriate line
control information and status messages to simulate the start, duration, and end of
a printer operation initiated by a message from the system under test.

If a printer operation is requested before the completion of a previous operation, a
device busy status message is generated and transmitted in response to the next
poll sequence. At the end of a simulated printer operation, a device end status
message is automatically generated.

WSim does not support the new line and end of media orders. The duration of a
simulated printer operation depends on the PRTSPD value coded on the DEV or
LU network definition statement and the number of non-null characters to be
printed from the terminal buffer. The amount of time required for this operation is
the number of non-null characters divided by the PRTSPD value.

Telnet 3270E supports printer simulation.

Simulating the 3278 magnetic stripe reader
The 3278 Magnetic Stripe Reader (MSR) attaches to a 3270 display device and
allows data to be input by reading a magnetic stripe. Data from an MSR can be
nonsecure or secure data.

WSim simulates the MSR in two ways, based on whether the data is nonsecure or
secure. Nonsecure data is displayed on the screen and can be altered by the
operator before it is sent to the host. When nonsecure data is read in from the
MSR, no field attribute or AID is generated. The data is displayed and then sent in
the same way as operator data, for example, with the Enter key or a PF key. For
this reason, nonsecure data is specified for WSim in a TEXT statement. As far as
the application is concerned, an operator typed in the data.

When secure data is successfully read, a field attribute is generated at the position
of the cursor if it is an unprotected character location. The attribute defines the
stripe data field as protected and the MDT bit is set on. If extended and character
attributes are supported, they are set to X'00'. The operator cannot alter the data. It
is automatically sent to the host in a READ MODIFIED operation with an AID of
X'E7'.

Chapter 18. Generating messages for specific types of devices 233

Use the STRIPE statement to specify secure magnetic stripe data in message
generation decks. The STRIPE statement has the same format and options as a
TEXT statement. However, it causes an AID of X'E7' to be set when it is processed.
The data is sent to the host in a READ MODIFIED operation when the next
delimiter statement in the deck is encountered. Data on a real magnetic stripe is
limited to 125 characters. If more than 125 characters are specified on the STRIPE
statement, they are ignored. The STRIPE statement is ignored for nondisplay
devices.

Simulating the Data Analysis/APL Character Set
The 3270 Data Analysis/APL Character Set (feature code 1066) expands the
character set of 3270 terminals by allowing the display of 80 APL-specific
characters and 35 TN print train characters not included in the normal character
set. The characters that can be entered at the keyboard are dependent upon
whether the APL or Text keyboard was installed. Some of the APL-specific
characters and all of the additional TN characters are transmitted to and from a
3270 terminal as 2-character sequences consisting of the start field (SF) order
(X'1D') plus a second byte that varies depending on the character. The set of
allowable values for the second byte is mutually exclusive with the set of values
that represent valid attribute bytes when encountered following the SF order.

The ALTCSET=NONE and EXTFUN=NO operands on the DEV or LU statements
specify the Data Analysis/APL Character Set feature on any 3270 terminal,
regardless of model.

You can enter any 8-bit character as data with the TEXT statement. You must
ensure that this data does not include line control or other invalid characters. To
include characters that must be transmitted as 2-character sequences, you must
specify the hexadecimal value that corresponds to the WSim internal representation
of that character. Table 13 on page 271 shows the hexadecimal values you should
use for WSim to transmit specific 2-character sequences. It is your responsibility to
restrict the characters entered at the simulated keyboard to those that can be
entered at a particular type of real keyboard (APL or Text, for example).

Table 14 on page 273 shows the WSim internal hexadecimal value translated into
the terminal buffer for each received 2-character sequence. If the internal WSim
representation of one of the 2-character sequences is received in the data stream
from the application, it is interpreted as the 2-character sequence. If an invalid
2-character sequence is received, for example, an SF order followed by an invalid
character, WSim translates the sequence to an X'60' character.

See IBM 3270 Information Display System for the specific code assignments for the
3270 Data Analysis/APL Character Set, for both the 1-character and 2-character
sequences.

Simulating the APL/Text Character Set
WSim supports the 3270 APL/Text Character Set (feature code 1120) when
ALTCSET=APL is specified for device types LU2 and LU3. The 3270 APL/Text
Character Set differs from the 3270 Data Analysis/APL Character Set in that the
2-character sequences begin with a graphic escape character (X'08') instead of a
start field (SF) order (X'1D'). Also, the character code points for APL symbols may
not be the same in both character sets.

Use the CHARSET statement to specify which 3270 character set is used for
subsequent data input during message generation. CHARSET APL specifies that

234 Creating Workload Simulator Scripts

the APL/Text Character Set is used. CHARSET FIELD or CHARSET with no
operand specifies that the standard EBCDIC character set is used. The following
example shows you how to use the CHARSET statement in a message deck.
APLTEXT MSGTXT

CHARSET APL Enter data from APL character set.
TEXT (’DF’) APL comment symbol.

* Return to standard EBCDIC character set.
CHARSET
TEXT (X = 4 1 6)
NL
TEXT (X) Variable X.
CHARSET APL
TEXT (’9F’) APL (left) pointer symbol.
CHARSET FIELD
TEXT (4 1 6) Vector 4 1 6 assigned to X.
ENTER
ENDTXT

Simulating 3270 extended functions
WSim supports 3270 extended functions for device types LU2 and LU3. Extended
highlighting, extended color, Programmed Symbols (PS), 12-bit and 14-bit buffer
addressing, multiple partitions, and structured fields are supported by the
EXTFUN, HIGHLITE, COLOR, PS, MAXNOPTN, and MAXPTNSZ operands on
the device statements in your network definition. You can simulate the 3270
extended function operator interface by using the message generation statements
COLOR, HIGHLITE, CHARSET, JUMP, CLEARPTN, and SCROLL. Descriptions of
each of the 3270 extended functions follow.

Extended color
WSim provides seven-color display and four-color printer simulation when you
specify COLOR=MULTI in the definition of device types LU2 and LU3. Use the
COLOR message generation statement to enter data into the display buffer with
the associated character attributes set to reflect the color of the displayed
characters. When the current inbound reply mode state does not allow color
selection or when COLOR=MULTI is not specified for the simulated device, log
message ITP441I is generated. WSim generates a color query response structured
field in response to a read partition query that reflects the seven-color display or
four-color printer support.

The following example shows a sample message deck for a color terminal or
printer.
COLOR MSGTXT COUNT=1
*
* Color Scripting Example
*

COLOR RED
TEXT (RED CHARACTERS)
COLOR BLUE
TEXT (BLUE CHARACTERS)
COLOR FIELD
TEXT (CHARACTERS OF FIELD-DEFINED COLOR)
ENTER
ENDTXT

Extended highlighting
WSim provides display and printer extended highlighting simulation when you
specify HIGHLITE=YES in the definition of device types LU2 and LU3. Use the
HIGHLITE message generation statement to enter data into the display buffer with
the associated character attributes set to reflect the highlight of the displayed

Chapter 18. Generating messages for specific types of devices 235

characters. When the current inbound reply mode state does not allow color
selection or when COLOR=MULTI is not specified for the simulated device, log
message ITP441I is generated. WSim generates a highlight query response
structured field in response to a read partition query that reflects the device
highlighting support.

The following example shows a sample message deck using extended highlighting.
HIGHLITE MSGTXT COUNT=1
*
* Highlighting Scripting Example
*

HIGHLITE BLINK
TEXT (BLINKING CHARACTERS)
HIGHLITE REVERSE
TEXT (REVERSE IMAGE CHARACTERS)
HIGHLITE FIELD
TEXT (CHARACTERS WITH FIELD-DEFINED HIGHLIGHTING)
ENTER
ENDTXT

Programmed Symbols (PS)
WSim provides display and printer Programmed Symbol (PS) simulation on the PS
operand for device types LU2 and LU3. You can define one to six programmed
symbols as either single or triple plane. Upon receiving a load PS structured field,
WSim saves the PS name value, and it becomes the character set attribute value
sent and received with SA, SFE, and MF orders. WSim ignores the load PS
structured field character cell data because no characters are displayed. The
output-only bit of the load PS structured field is saved to inhibit operator (WSim
script) selection of the PS. WSim generates a character set query response
structured field in response to a read partition query that reflects the device
character set and PS support. You can code the CCSIZE operand to specify the
character cell size values in the query response.

Use the CHARSET message generation statement to enter data into the display
buffer with the associated character attributes set to reflect the PS character set of
the displayed characters. Log message ITP441I is generated when the current
inbound reply mode state disallows operator (WSim script) PS character set
selection or when the requested PS is not specified for the simulated device.

The following example shows a sample message deck using programmed symbols.
CHARSET MSGTXT COUNT=1
*
* Character Set Scripting Example
*

CHARSET PSA
TEXT (CHARACTERS FROM PS 1 CHARACTER SET)
CHARSET PSF
TEXT (CHARACTERS FROM PS 6 CHARACTER SET)
CHARSET FIELD
TEXT (CHARACTERS FROM FIELD-DEFINED CHARACTER SET)
ENTER
ENDTXT

Multiple partitions and scrolling
The 3290 display terminal with the Enhanced Function or Multiple Partitions and
Scrolling feature support screen partitioning. The display area can be divided into
as many as 16 rectangular viewports for the 3290. Each viewport is associated with

236 Creating Workload Simulator Scripts

a particular partition and displays all or portions of the data from that partition.
The operator controls data entry into the partitions using the Jump, Clear Partition,
and Scroll keys.

WSim maintains separate buffers for each partition created and supports all of the
structured fields associated with partitioning. WSim generates a partitioning query
response structured field in response to a read partition query that reflects the
partitioning support.

Use the message generation statements JUMP, CLEARPTN, and SCROLL to control
the simulated partitions. Use the CURSOR, DATASAVE, IF, and SELECT
statements with the (row,col) operand to reference the simulated partitions. All
references to the display buffer using specifications other than (row,col) reference
data in the active partition. Log message ITP441I is generated whenever a JUMP,
CLEARPTN, or SCROLL statement operation cannot be performed.

12-Bit and 14-Bit buffer addressing
WSim supports display and printer 12-bit and 14-bit buffer addressing when you
specify EXTFUN=YES for device types LU2 and LU3. Data streams received by
WSim can include 12-bit or 14-bit buffer addresses. WSim generates 12-bit buffer
addresses unless the current display buffer size is greater than 4096 bytes, which
forces 14-bit buffer addresses to be generated. WSim rejects any buffer address
with bits 0 and 1 of the first byte set to B'10'.

Structured fields
WSim supports the Write Structured Field command (WSF) when you specify
EXTFUN=YES for device types LU2 and LU3. Data received with the WSF
command is assumed to be one or more structured fields in the length-parameters
structured field data format. When the structured field length (first 2 bytes of the
structured field) is zero, the structured field is considered to be the last within the
chain of data being received, and all the data received until the end of the data
chain is processed as part of the last structured field.

WSim supports the following structured fields that are associated with the 3270
extended functions:
v Load Programmed Symbols
v Read Partition - Query
v Set Reply Mode.

WSim also supports the following features representing recent 327X enhancements:
v Summary Query Reply
v Query List

WSim support for these recent 327X enhancements is explained below:

Summary query reply: The Summary Query Reply is generated by newer 3270
cluster controllers in response to a Read Partition Query structured field to
indicate support of Query List and to list the types of query replies that are
supported. WSim automatically generates the Summary Query Reply in response
to a Read Partition Query structured field.

Query list: The Query List type parameter (byte 5 = X'03') in a Read Partition
structured field enables a host application to request a subset of the display
function query replies by specifying the type of query list replies wanted. WSim
accepts the Query List type parameter of the Read Partition structured field and
returns the requested query replies as specified.

Chapter 18. Generating messages for specific types of devices 237

Testing field and character attributes
You can test for standard field, extended field, and character attributes by using
the $ATTR$ data field option to save the attributes at a specific screen location.
You can use this option to identify attributes such as color, highlighting, character
set, field validation, field outlining, and SO/SI enabled.

The $ATTR$ data field option generates up to eleven EBCDIC characters that
provide attribute information. You can save these characters with the DATASAVE
statement and test them with IF statements to determine the attribute values for a
specified screen location.

$ATTR$ has the following format:
$ATTR,location,length$

location can be B+value or B-value, indicating a location relative to the beginning or
end of the screen image buffer; C+value or C-value, indicating a location relative to
the position of the cursor; or row,col, indicating a specific row and column on the
screen. length can be 1 - 11, indicating the number of EBCDIC characters to be
generated that will provide attribute information.

Table 12 indicates the values of the eleven EBCDIC characters generated by the
$ATTR$ data field option:

Table 12. Values generated by the $ATTR$ data field option

Byte Defines Explanation

1 Attribute Information
E Location specification error.

0 Unformatted screen, default
field and actual character
attribute values will be
generated.

1 Formatted screen, no field
attribute defined at specified
location, actual field and
character attribute values will
be generated.

2 Formatted screen, field
attribute defined at specified
location, actual field and
default character attribute
values will be generated.

2 Standard Field Attribute
X EBCDIC translated standard

field attribute character when
byte 1 is set to 1 or 2. A
blank will be generated
when byte 1 is set to E or 0.

3 Highlighting Field Attribute
N No extended attribute buffer

or byte 1 set to E

0 Default, normal highlighting

1 Blinking

2 Reverse image

3 Underlined

238 Creating Workload Simulator Scripts

Table 12. Values generated by the $ATTR$ data field option (continued)

Byte Defines Explanation

4 Highlighting Character Attribute
N No extended attribute buffer

or byte 1 set to E

0 Default, normal highlighting

1 Blinking

2 Reverse image

3 Underlined

5 Color Field Attribute
N No extended attribute buffer

or byte 1 set to E

0 Default, normal color

1 Blue

2 Red

3 Pink

4 Green

5 Turquoise

6 Yellow

7 White

6 Color Character Attribute
N No extended attribute buffer

or byte 1 set to E

0 Default, field defined

1 Blue

2 Red

3 Pink

4 Green

5 Turquoise

6 Yellow

7 White

7 Character Set Field Attribute
N No extended attribute buffer

or byte 1 set to E

0 Default, base character set

1 APL

2 PSA

3 PSB

4 PSC

5 PSD

6 PSE

7 PSF

8 DBCS

Chapter 18. Generating messages for specific types of devices 239

Table 12. Values generated by the $ATTR$ data field option (continued)

Byte Defines Explanation

8 Character Set Character Attribute
N No extended attribute buffer

or byte 1 set to E

0 Default, field defined

1 APL

2 PSA

3 PSB

4 PSC

5 PSD

6 PSE

7 PSF

8 DBCS

9 Field Validation Field Attribute
N Field validation not

supported or byte 1 set to E

0 Default, no field validation
specified

1 Trigger

2 Mandatory enter

3 Trigger and mandatory enter

4 Mandatory fill

5 Mandatory fill and trigger

6 Mandatory fill and
mandatory enter

7 Mandatory fill, mandatory
enter, and trigger

10 Field Outlining Field Attribute
N Field outlining not supported

or byte 1 set to E

0–9, A–F
Field outlining settings

11 SO/SI Operator Creation Attribute
N DBCS not supported or byte

1 set to E

0 SO/SI creation by operator
not enabled

1 SO/SI creation by operator
enabled

The following example shows how you can use the $ATTR$ data field option to
test the attributes at the current position of the cursor:
SAVE1 DATASAVE AREA=U+0,TEXT=($ATTR,C+0,9$)
IF1 IF LOC=U+2,TEXT=(1),WHEN=IMMED,ELSE=B-ERROR
IF2 IF LOC=U+4,TEXT=(2),WHEN=IMMED,ELSE=B-ERROR
WTO1 WTO (THE CURSOR IS CURRENTLY IN A BLINKING RED FIELD)

240 Creating Workload Simulator Scripts

Logging the display image for formatting by the Loglist Utility
The 3270 display and printer buffers maintained by WSim can be written to the log
data set and later formatted by the Loglist Utility into screen images as the 3270
display operator would see them. Use the LOGDSPLY operand on the NTWRK
statement in your network definition and the LOG statement with the DISPLAY
operand in your message generation decks to control the writing of the display
buffers. See the WSim Script Guide and Reference for information about using these
statements. WSim Utilities Guide provides information about using the Loglist
Utility.

Display Monitor Facility
The Display Monitor Facility enables you to view simulated 3270 display images
on a monitoring 3270 display during a simulation run. See WSim User's Guide for a
detailed description of the Display Monitor Facility.

Simulating DBCS data entry for simulated 3270 DBCS
terminals

WSim supports simulation of 3270 DBCS terminals that send and receive messages
with DBCS data. You can enter DBCS data in scripts by either entering the DBCS
data directly from a 3270 DBCS display into the script or by using the DATASAVE
DBCS functions such as SB2MDBCS to create DBCS data at message generation
time. See “Converting data in a save or user area with the DATASAVE statement”
on page 133 for more information about converting DBCS data.

When you enter DBCS data into the script from a 3270 DBCS display, the DBCS
data is identified by wrapping Shift-Out (SO) (X'0E') and Shift-In (SI) (X'0F')
characters around the DBCS data. DBCS data entered in this manner is called
literal text DBCS data. You can enter literal text DBCS data as text data and
within comments. DBCS data identified using SO and SI characters is also referred
to as a “DBCS subfield” or DBCS data in a mixed string.

In the following examples and discussion, the SO character is represented using a
"<", the SI character is represented using a ">", and the first byte of each DBCS
character, which is referred to as the ward byte, is represented using a "." character.

The following examples enter DBCS data into the simulated screen. The
DATASAVE SB2MDBCS function creates a mixed string containing a DBCS
subfield with ward 42 (EBCDIC) DBCS data from the input string.
TEXT (<.A.B.C>) DBCS data entered using 3270 DBCS display

DATASAVE AREA=1, save area 1 = <.A.B.C>
FUNCTION=SB2MDBCS, convert SBCS to mixed string ward 42 DBCS
TEXT=(ABC) SBCS data to be converted to DBCS

TEXT ($RECALL,1$) Ward 42 (EBCDIC) DBCS data via DATASAVE

You can code literal text DBCS data and SBCS data within the same mixed string,
as shown in the following examples.
TEXT (<.D.B.C.S> and SBCS) Mixed string from 3270 DBCS display

TEXT ($RECALL,1$ and SBCS) Mixed string using recall from save area

The message generation process depends on the SO and SI characters to identify
DBCS data. Once the message generation process detects an SO character, all the
data following the SO character is assumed to be DBCS data until an SI character

Chapter 18. Generating messages for specific types of devices 241

is processed or the TEXT statement is ended. Extra SO and SI characters
encountered in the TEXT data are ignored.

The only exception to this rule is for a 3270 DBCS field. When you first start
entering text data into a DBCS field, the data is accepted and assumed to be DBCS
data.

The simulated screen is updated based on the type of data (SBCS or DBCS) entered
and the format of the simulated screen or field the data is being entered into.

IBM 5250 Display System
WSim simulates an IBM 5250 display terminal as a logical unit Type 7 (device type
LU7). WSim simulates an IBM 5250 printer as a logical unit Type 4 (device type
LU4). WSim maintains a screen image buffer and a format table for each terminal.
The buffer can be modified by messages generated by WSim and by commands
and orders received from the system under test. The format table can be modified
by commands and orders received from system under test.

The format table consists of header information that is supplied by the start of
header (SOH) order, and one entry for each field defined in the screen image
buffer. Each entry in the format table consists of at least a starting and ending
address that defines the field limits on the screen image, and a field format word
(FFW) that contains information pertinent to that field, such as type of field, MDT
bit, and field specifications that govern how that field is to be processed.

Data generated by WSim is placed into a terminal buffer under control of a Read
command that must be received from the system under test before message
generation can be entered. WSim automatically breaks the transmitted data into
RU chain elements.

When Read commands for a terminal are received in the data stream, they are
placed in a queue. When a poll is received and all conditions for entering message
generation have been met, a message is generated into the terminal buffer under
control of the FFW for the field being written into.

A terminal is placed in Normal Lock State when a message is generated or when
certain commands are received. It is placed in Normal Unlock State when its
message delay expires or when a Read command is received with the unlock
keyboard bit set to B'1'.

Message generation
The following four types of messages can be generated for a 5250 display terminal:
1. Sense responses

SNA sense responses are generated in response to the following:
v Invalid commands
v Orders
v Parameter data passed with commands or orders
v Failure of data termination in conjunction with chaining.

2. SIGNAL requests
SNA SIGNAL requests are generated in response to a poll when an error
condition is detected during message generation or is specified on the HELP
statement with a CODE operand value. The error code is set into the error row

242 Creating Workload Simulator Scripts

for the terminal and then sent to the system under test in the sense code area
of the SIGNAL command. You can code a HELP statement to specify an error
code that is to be generated by the simulated terminal. See “Simulating errors
in a 5250 terminal” on page 244 for more information about generating errors
for 5250 display terminals.

3. Logical unit status requests
Logical unit status (LUSTAT) requests are generated in response to a poll after
a message has been generated into the device buffer and an error has been
detected during a Read Input Fields or Read Modified Fields command.
LUSTAT requests are also generated on an LU-LU or LU-SSCP session to notify
the system under test that a previous request, which was rejected due to the
state of the terminal, can now be serviced. An LUSTAT request can be
generated, for example, if resequencing is specified and the first field to be
transmitted to the host does not exist.

4. Normal messages
Normal messages are generated under the following conditions:
v When a device is polled and a Read command has been received
v When no delay is in effect
v When the logical WAIT indicator is reset
v When the INPUT INHIBITED indicator is reset
v When no status is pending.

Text messages to be generated are treated as data keyed in at a 5250 display
terminal. They are used to modify the screen image buffer according to the
cursor position and the field specifications supplied for each field entry within
the format table. Data that cannot be entered at a 5250 keyboard should not be
coded for these messages. After a message has been generated according to the
TEXT statement specifications, WSim interrogates the terminal buffer and
constructs the data to be transmitted, including headers, addresses, and the
AID byte. You can use the CLEAR, CMDn, ENTER, HELP, PRINT,
ROLLDOWN, ROLLUP, or SELECT statements to set the AID byte.

When WSim processes a SELECT statement for a 5250 display terminal, one of the
following actions is taken if the specified row or column address is within a
selectable field:
v If the field has not been modified, the first byte of the field is set to “>”, and the

master and field MDT bits are set ON.
v If the field has been modified, the first byte of the field is set to “?”, and the

field MDT is set OFF.
v If the field is specified as an auto enter field, an enter function is attempted. The

light pen enter AID and data are returned to the test system only when the field
MDT is turned ON.

Logic testing
You can use the IF statement to perform logic tests for 5250 terminals on the screen
image buffer data or the incoming or outgoing data stream.

You can specify a logic test on the screen image buffer for the terminal by coding
the B+, B-, C+, C-, or (row,col) location options on an IF statement. This type of
logic test operates on the data as it would be displayed at a real terminal. All logic
tests on a screen image buffer are performed after the buffer has been modified
according to the message generated or received. If a received message contains
invalid commands or orders, the data received before the invalid command or

Chapter 18. Generating messages for specific types of devices 243

order is processed and can modify the screen image buffer, but no data following
the invalid command or order is processed.

You can specify a logic test on an incoming or outgoing data stream, including
headers, commands, and orders, by coding the D+, TH+, RH+, or RU+ location
value on an IF statement. For more information about coding these values on the
IF statement, see “Coding the LOC operand” on page 171.

Simulating errors in a 5250 terminal
Use the HELP statement to cause a simulated 5250 terminal to transmit an error
code to the system under test. If the 5250 display is in error state when the HELP
statement is processed, the data in columns 2 through 5 of the display error line
are sent to the host as the sense bytes of a SIGNAL request. If the 5250 display is
not in error state, the value specified by the CODE operand is moved into the
error line and sent to the host in a SIGNAL request. If the code operand is omitted
or if it specifies a value of 0000 and the display is not in error state, the cursor
address and HELP AID are sent to the system under test.

244 Creating Workload Simulator Scripts

Part 4. Using message generation decks

© Copyright IBM Corp. 1989, 2015 245

246 Creating Workload Simulator Scripts

Chapter 19. Integrating decks with network definitions

The preceding chapters described the message generation statements you can code
to create message generation decks. Before you can begin a simulation, however,
you must provideWSim with a complete script by integrating your decks with a
network definition. As discussed in Part 1, “Defining WSim networks,” on page 1,
you code network definition statements to define the devices on the simulated
network, and describe the relationship between the resources and the system under
test.

To create a script, you code specific network definition statements and operands
that integrate your decks with the network definition. These statements and
operands associate decks with simulated resources, define the processing order for
each deck, establish how often WSim processes each deck, and name decks that
WSim uses for error recovery.

This chapter discusses the following network definition statements and operands
that you can code to integrate your decks with the network definition:
v PATH statement
v PATH operand on statements such as the TP, DEV, and LU statements
v CYCLIC operand on the PATH statement
v DIST statement
v FRSTTXT operand on statements such as the TP, DEV, and LU statements
v INCLUDE statement
v ATRDECK and ATRABORT operands on statements such as the DEV and LU

statements
v SCAN operand on the NTWRK statement.

Note: For a complete list of the statements on which the PATH, FRSTTXT,
ATRDECK, and ATRABORT operands can be coded, see the WSim Script Guide and
Reference.

After you integrate your decks and the network definition, you must decide how
to store your script. Both the Preprocessor and the ITPSYSIN utility program store
scripts in the predefined data sets WSim uses when running the simulation. If you
use the Preprocessor, however, you can check the syntax of your scripts before you
store them.

This chapter describes how to integrate your decks with a network definition and
how to store your scripts. A sample script is provided to help you understand the
integration process. This script is also used in Chapter 20, “Analyzing simulation
results,” on page 259, which provides examples of reports you can use to analyze
your simulations.

Note: If you use STL to create your message generation decks, you can include the
network definition in your STL input. This is an easy way to integrate your decks
with your network definition.

© Copyright IBM Corp. 1989, 2015 247

Selecting message decks in the network definition
To integrate your decks with the network definition,WSim provides several
network definition statements and operands that select message generation decks
for processing. The following sections provide information about each statement
and operand and describe how they affect the message generation process.

Selecting decks with the PATH statement
With the PATH network definition statement, you can specify a path, that is, a
series of message generation decks listed in a specific order. You can define any
number of paths for each network definition:
name PATH deck,deck,... Specifies the sequence in which message
* generation decks are processed during a
* simulation.

You can identify each path uniquely by coding 1 - 8 alphanumeric characters in the
PATH statement's name field. When you code deck,deck..., you specify the names of
message generation decks in the order in which you wantWSim to reference the
decks during a simulation:
PATH1 PATH DECK1,DECK4,DECK2 References DECK1, DECK4, then DECK2.

During message generation, WSim selects decks for processing in the order
indicated by the PATH statement.

Note: The PATH statement names only the main decks to be processed by a
simulated resource. Do not code the names of decks that are called or branched to
from within a deck.

Assigning paths to simulated resources
After you define paths on the PATH statement, code the PATH operand to assign a
sequence of paths to each simulated resource on the network. For example, to
specify a resource reference PATH1 and then PATH3, code the PATH statements
and the PATH operand as shown in the following example:
PATH1 PATH DECK1,DECK2 References DECK1, then DECK2.
PATH2 PATH DECK2,DECK1 References DECK2, then DECK1.
PATH3 PATH DECK1,DECK4,DECK2 References DECK1, DECK4, then DECK2.
*
DEV1 DEV PATH=(PATH1,PATH3) Specifies path selection for DEV1.

During message generation, DEV1 first processes the decks named by PATH1 in
the specified order; then it processes the decks named by PATH3 in the specified
order. WSim processes the decks in each path as complete entities, beginning with
the MSGTXT statement and continuing until the ENDTXT statement is processed.
After completing the last deck in a path, WSim selects the first deck from the next
path assigned to the terminal. If the last deck has been selected from the last
assigned path,WSim selects the first deck from the first path, repeating the
sequence of paths and decks.

If you do not code the PATH operand for a simulated resource, WSim selects path
entries sequentially from all of the PATH statements defined in the network. In this
way, WSim completes the first path in sequence and then the second path,
continuing until all paths have been processed.

Note: For a complete list of the statements on which you can code the PATH
operand, see the WSim Script Guide and Reference.

248 Creating Workload Simulator Scripts

Selecting paths in a cycle
You can control how WSim selects assigned decks by coding the CYCLIC operand
on the PATH statement. The CYCLIC operand determines how each simulated
resource selects decks within the assigned path. For example, any number of
simulated resources can reference the same deck within a PATH statement.
Normally, each resource begins with the first deck named in the path and selects
each deck in order as it proceeds through the path. When you code CYCLIC=YES,
however, the next deck is maintained on a PATH rather than a terminal basis. Each
terminal begins processing the next deck for the PATH.

WSim remembers the next deck for each PATH statement that specifies
CYCLIC=YES.WSim begins with the first deck on the PATH statement and
processes the next deck whenever a terminal references that statement. If a
terminal references a cyclic path for a deck prior to or equal to the one currently
being completed by the terminal, the terminal selects the first available entry from
the next PATH statement. If there is only one PATH statement, the terminal selects
the first available entry from the same PATH statement.

The following example shows the coding for cyclic path selection:
PATH1 PATH DECK1,DECK2,DECK3 WSim processes DECK1 through DECK3.

CYCLIC=YES
*
DEV1 DEV PATH=(PATH1) Specifies the path for DEV1.
DEV2 DEV PATH=(PATH1) Specifies the path for DEV2.
DEV3 DEV PATH=(PATH1) Specifies the path for DEV3.
DEV4 DEV PATH=(PATH1) Specifies the path for DEV4.

In this example, the first terminal referencing PATH1 selects the first deck (DECK1)
in the path, the second terminal selects the second deck (DECK2), and so on. The
fourth terminal would select the first deck (DECK1) again. When the last deck in
PATH1 is selected, the next terminal begins again with the first deck in the path.

Selecting paths with a probability distribution
During a simulation, you might not want a resource simply to repeat a sequence of
message generation decks specified on a path. With the DIST network definition
statement, you can assign a weighted value to each deck in a path. As shown in
the following example,WSim uses these weighted values to select a deck from a
probability distribution each time the path is referenced:
name DIST weight,weight,... Defines a probability distribution for
* selecting decks from a PATH statement.

You associate a DIST statement with a PATH statement by assigning it the same
name as the PATH statement. The numbers you code for weight,weight... assign
relative weights to corresponding entries on the PATH statement.WSim divides
each weight by the total of the weights to obtain fractional values for each
corresponding PATH entry. Therefore, each weight is a proportion of the total of
the weights on the statement.

Note: If the weights specified on the DIST statement total 100, the weights
represent percentages.

The fractional values represent the probability that a particular message generation
deck will be chosen from the corresponding PATH statement. For example, when
WSim selects a PATH statement with an associated DIST statement, one entry from
that path is selected according to the specified distribution before proceeding to the
next path for the terminal.

Chapter 19. Integrating decks with network definitions 249

The following example shows PATH and DIST statements with corresponding
names. If WSim processes PATH1 100 times, on the average it selects DECK1 20
times and DECK2 80 times:
PATH1 PATH (DECK1,DECK2) Specifies selection of message decks.

.

. Network definition statements.

.
PATH1 DIST 20,80 Defines probability distribution for selecting
* decks from PATH statement named PATH1.

Note: You can also specify how many times WSim repeats a deck named on a
PATH statement by coding the COUNT operand on the MSGTXT message
generation statement. When you code COUNT=integer, WSim reduces integer by
one each time it processes the deck. When the count reaches zero,WSim moves on
to the next deck named in the path. For more information about the COUNT
operand, see the WSim Script Guide and Reference.

Specifying the first message generation deck
When you specify a path in the network definition, each resource associated with
that path can repeat the sequence of decks many times during the simulation. For
some simulations, however, you might not want each deck processed repeatedly.
To specify a deck that is used only once at the beginning of a simulation, name
that deck on the FRSTTXT operand. During the simulation, WSim selects the
named deck as the first deck for the terminal and does not process it again unless
the deck is also specified on a PATH statement. Typically, the FRSTTXT operand
specifies a message generation deck containing a logon sequence for the terminal.

The following example shows a DEV statement coded with the PATH and
FRSTTXT operands.WSim first uses the deck specified by the FRSTTXT operand,
then follows the sequence of paths specified by the PATH operand:
PATH1 PATH DECK2,DECK3 Reference DECK2, then DECK3.
PATH2 PATH DECK3,DECK2 References DECK3, then DECK2.
*
DEV1 DEV PATH=(PATH2,PATH1), DEV1 references PATH2, then PATH1.

FRSTTXT=DECK1 Specifies the first deck used by DEV1.

Note: For a complete list of the statements on which you can code the FRSTTXT
operand, see the WSim Script Guide and Reference.

Including decks in a script
When WSim starts a simulation, it automatically loads all the message generation
decks that are referenced within a script. Therefore, you must reference all the
message generation decks you want to use during the simulation somewhere
within your script. For example, you might want to include a deck that can be
referenced with the A (Alter) operator command at the operator's choice. To make
decks available that are not referenced in the network definition or in a message
generation deck, you can code the INCLUDE network definition statement.

As shown in the following example, the INCLUDE statement enables you to
include as many decks in your script as you want:
INC1 INCLUDE DECKA,DECKB,DECKC Specifies decks to be included that may
* not be referenced anywhere else in the
* script.

250 Creating Workload Simulator Scripts

Specifying decks for error recovery
During a simulation, a terminal might become inactive if one of the decks it uses
contains an error or if an unexpected response is received from the system under
test. WSim provides an Automatic Terminal Recovery (ATR) feature that attempts
to recover automatically any simulated terminal that is inactive for a certain period
of time. Whether to attempt recovery and how long to wait after a terminal is
detected as inactive before attempting recovery is controlled by the third value
specified on the SCAN operand on the NTWRK statement.

The ATRDECK operand names an error recovery deck for the terminal that
performs a sequence of actions to return the terminal to a known state. For
example, you could name a recovery deck that would log the terminal off the
application and log it back on.

With the ATRABORT operand, you can specify how WSim continues message
generation after processing the recovery deck. You can code one of the following
values for ATRABORT:

NONE Specifies that message generation continues in the same deck that was being
used when the inactivity occurred.

DECK Specifies that the current deck is aborted and message generation continues
with the next deck in the current path.

PATH Specifies that the current path is aborted and message generation continues
with the next path specified for the terminal.

The following example shows how to code the ATRDECK and ATRABORT
operands:
DEV1 DEV ATRDECK=rname, Specifies an error recovery deck.

ATRABORT=DECK Abort the current deck; message generation
* continues with the next deck in the path.

Note: For a complete list of the statements on which you can code the ATRDECK
and ATRABORT operands, see the WSim Script Guide and Reference.

You can activate automatic terminal recovery with the SCAN operand on the
NTWRK statement or the A (Alter) operator command. The following example
shows the required syntax for the SCAN operand:
NET1 NTWRK SCAN=(x,y,z,sname) Activates automatic terminal recovery.

With the SCAN operand, you can specify a deck to be used as a replacement for
the defective deck. Each time the terminal uses the path containing the defective
deck, WSim substitutes the replacement deck for the defective deck.

You can define automatic terminal recovery by coding the following values on the
SCAN operand:

x Specifies the amount of time between inactive terminal reports.

y Specifies the amount of time that may elapse before a terminal is listed
inactive.

z Specifies the number of minutes WSim delays between detecting an
inactive terminal and invoking automatic terminal recovery.

sname Specifies the name of a message generation deck WSim uses as a substitute
for decks that cause terminals to enter automatic terminal recovery.

Chapter 19. Integrating decks with network definitions 251

For information about automatic terminal recovery with the A (Alter) operator
command, see WSim User's Guide.

Creating a script
The following sections present a sample script to help you understand how
message generation decks and the network definition are integrated:
v “Understanding the network definition” presents the network definition and an

explanation of the statements coded to define the network.
v “Understanding the sample message generation decks” on page 254 presents

four message generation decks that enable you to simulate logging on TSO,
accessing ISPF, clearing the screen, and then logging off TSO.

v “Understanding the sample script” on page 255 integrates the network definition
and the message generation decks to create a script and provides a step-by-step
description of how WSim processes the script.

Understanding the network definition
The network definition presented in the following example defines a simulated
network that includes a logical unit representing a VTAM application. The
following example provides an illustration of the simulated network's logical
configuration.
SAMP1 NTWRK HEAD=’Sample Network 1’, Heading for interval reports.

UTI=100, Network user time interval.
MSGTRACE=YES, Logs MTRC records.
BUFSIZE=5000 5000-byte buffer for LU.

*
* Coding for a network named SAMP1:
*
*
NETIF IF LOC=RU+0,TEXT=(***), Defines logic test for messages

THEN=CCLEAR,WHEN=IN, received from the system under
SCAN=YES test.

SIMPLE PATH INITSESS,LOGOFF Specifies the order in which
* WSim processes message decks
* named INITSESS and LOGOFF.
WSIMAPPL VTAMAPPL
* Defines VTAM application named
* WSIMAPPL.
SLU LU PATH=(SIMPLE), Specifies a path named SIMPLE.

MAXSESS=(0,001), Defines one secondary half-
INIT=SEC, session for SLU. Specifies
LUTYPE=LU2, LU type and the name of a VTAM
DLOGMOD=D4A32782, logon mode table entry, delays
THKTIME=UNLOCK, start of intermessage delays,
LOGDSPLY=BOTH, writes display buffers to the
RSTATS=YES log data set, and accumulates

* response-time statistics.

Each of the following statements coded in the sample network definition combines
to create the simulated network:
v NTWRK
v IF
v PATH
v VTAMAPPL
v LU.

The operands coded on the sample NTWRK statement determine the following
network characteristics:

252 Creating Workload Simulator Scripts

HEAD='Sample Network 1'
Specifies the heading WSim prints on each interval report for the network.

UTI=100
Specifies a user time interval for the network.WSim multiplies this interval
by a delay value to determine the intermessage delay.

MSGTRACE=YES
Specifies that trace records be written to the log data set.

BUFSIZE=5000
Specifies a 5000-byte terminal buffer for network logical units.

The IF statement defines a logic test to be performed when messages are received
from the system under text:

LOC=RU+0
Specifies that WSim starts the comparison at the first byte in the
request/response unit.

TEXT=(***)
Specifies that WSim tests for the characters “***”.

THEN=CCLEAR
Specifies that if the test condition is met, WSim calls the deck named
CLEAR and continues message generation.

WHEN=IN
Specifies that WSim performs the test each time a message is received from
the system under test.

SCAN=YES
Specifies that WSim scans the data sequentially, character by character,
beginning at the cursor location specified by the LOC operand.

Each time a message is received from the system under test, WSim begins testing
for the characters *** at a zero offset from the start of the request unit (RU+0). If
the characters are not found, message generation continues. If the characters are
found, WSim calls the CLEAR deck and continues message generation with that
deck.

The PATH statement specifies the order in which WSim processes the message
generation decks. In the sample network, the PATH statement named SIMPLE
specifies the following order: INITSESS and then LOGOFF.

The VTAMAPPL statement defines a VTAM application named WSIMAPPL. The
operands on the LU statement define the simulated logical unit named SLU:

PATH=(SIMPLE)
Specifies that WSim processes the path named SIMPLE for the logical unit.

MAXSESS=(0,001)
Specifies a maximum of one concurrent secondary half-session for the
logical unit.

INIT=SEC
Specifies that a secondary logical unit initiates the session.

LUTYPE=LU2
Specifies the type of logical unit being simulated for the SNA half-session.

Chapter 19. Integrating decks with network definitions 253

DLOGMOD=D4A32782
Specifies the name of a VTAM logon mode table (MODETAB) entry for this
logical unit.

THKTIME=UNLOCK
Delays the start of intermessage delays for this logical unit.

LOGDSPLY=BOTH
Specifies that display buffers are written to the log data set.

Figure 23 illustrates the logical configuration simulated by the sample network
definition.

Understanding the sample message generation decks
This section presents the other part of the sample script: the message generation
decks. The four message generation decks that follow enable you to simulate
logging on TSO, accessing ISPF, clearing the screen, and then logging off TSO.

The following example illustrates the first message generation deck, which is
named INITSESS. INITSESS initiates the message generation session and simulates
the logical unit SLU logging on to TSO. In this deck, the TSO resource name is
TSO01. The user ID is ID02, and the password is PW02.
INITSESS MSGTXT
* Beginning of INITSESS.
WTO1 WTO (STARTING $MSGTXTID$) Sends message to console.
CMND1 CMND COMMAND=INIT, Initiates session.

RESOURCE=TSO01
1 IF LOC=RU+0, Tests for characters ENTER

TEXT=(ENTER USERID), USERID.
SCAN=YES,THEN=CONT,
ELSE=WAIT

WAIT1 WAIT
* Interrupts message generation.

MSG1 TEXT (ID02) Enters user ID ID02.
WTO2 WTO (Logging on TSO as), Sends message to console.

(ID02)
ENTER1 ENTER Sets ENTER AID byte.
2 IF LOC=RU+0, Tests for characters ENTER

TEXT=(ENTER LOGON), LOGON.
SCAN=YES,THEN=CONT

WAIT2 WAIT
* Interrupts message generation.

MSG2 TEXT (PW02) Enters user password PW02.
ENTER2 ENTER Sets ENTER AID byte.
3 IF LOC=RU+0, Tests for characters ISPF/PDF

TEXT=(ISPF/PDF), PRIMARY.
(PRIMARY),SCAN=YES,
THEN=CONT

4 IF LOC=RU+0,TEXT=(READY), Tests for characters READY.

TSO

VTAM

SLU

Simulated by WSim

Figure 23. Logical configuration for sample network definition

254 Creating Workload Simulator Scripts

SCAN=YES,THEN=CISPFDECK
WAIT3 WAIT
* Interrupts message generation.

WTO3 WTO (Logged on and), Sends message to console.
(received ISPF Primary),
(Menu)

ENDTXT End of INITSESS.

As shown in the example below, the second deck, named ISPFDECK, simulates
SLU accessing ISPF and then waiting for the ISPF primary menu to be returned
before continuing message generation.
ISPFDECK MSGTXT
* Beginning of ISPFDECK.
WTO1 WTO (STARTING $MSGTXTID$) Sends message to console.
MSG1 TEXT (ISPF) Enters ISPF.
ENTER1 ENTER Sets ENTER AID byte.
1 IF LOC=RU+0, Tests for characters ISPF/PDF

TEXT=(ISPF/PDF), PRIMARY.
(PRIMARY),SCAN=YES,
THEN=CONT

WAIT1 WAIT
* Interrupts message generation.
WTO2 WTO (Logged on and), Sends message to console.

(received),
(ISPF Primary Menu)

ENDTXT End of ISPFDECK.

The following example illustrates LOGOFF, which simulates SLU exiting ISPF and
logging off TSO.
LOGOFF MSGTXT
* Beginning of LOGOFF.
WTO1 WTO (Starting $MSGTXTID$) Sends message to console.
MSG1 TEXT (X) Enter text to exit ISPF.
1 IF LOC=RU+0,TEXT=(READY), Tests for characters READY.

SCAN=YES,THEN=CONT
WAIT1 WAIT
* Interrupts message generation.
MSG2 TEXT (LOGOFF) Enter text LOGOFF.
WTO2 WTO (Logged off TSO) Sends message to console.
WAIT2 WAIT
* Interrupts message generation.
OPCMND1 OPCMND (ZEND) Specifies operator command ZEND.

ENDTXT End of LOGOFF.

As shown in the following example, deck CLEAR clears the screen when the
characters “***” appear in the request unit (RU+0).
CLEAR MSGTXT
* Beginning of CLEAR.
CLEAR1 CLEAR Clears the screen.

ENDTXT End of CLEAR.

Understanding the sample script
Now that you understand the network definition and the message generation
decks separately, the following example presents the complete sample script.
SAMP1 NTWRK HEAD=’Sample Network 1’, Heading for interval reports.

UTI=100, Network user time interval.
MSGTRACE=YES, Logs MTRC records.
BUFSIZE=5000 5000-byte buffer for LU.

*
* Sample WSim Script
* This script defines a simple network in which WSim simulates a
* single LU representing a VTAM application. WSim uses three message

Chapter 19. Integrating decks with network definitions 255

* generation decks to simulate logging a logical unit on to TSO and
* then off again.
*
* Coding for a network named SAMP1:
*

NETIF IF LOC=RU+0,TEXT=(***), Defines logic test for messages
THEN=CCLEAR,WHEN=IN, received from the system under
SCAN=YES test.

*
SIMPLE PATH INITSESS,LOGOFF Specifies the order in which
* WSim processes message decks
* named INITSESS and LOGOFF.
*
WSIMAPPL VTAMAPPL
* Defines VTAM application named
* WSIMAPPL.

SLU LU PATH=(SIMPLE), Specifies path named SIMPLE.
MAXSESS=(0,001), Defines one secondary half-
INIT=SEC, session for SLU. Specifies
LUTYPE=LU2, LU type and the name of a VTAM
DLOGMOD=D4A32782, logon mode table entry, delays
THKTIME=UNLOCK, start of intermessage delays,
LOGDSPLY=BOTH, writes display buffers to the
RSTATS=YES log data set, accumulates

* response-time statistics.

INITSESS MSGTXT
*
* INITSESS deck simulates SLU logging on to TSO. In this deck, the TSO
* resource name is TSO01, the user ID is ID02, and the password is PW02.
*
* Beginning of INITSESS.
WTO1 WTO (STARTING $MSGTXTID$) Sends message to console.
CMND1 CMND COMMAND=INIT, Initiates session.

RESOURCE=TSO01
1 IF LOC=RU+0, Tests for characters ENTER

TEXT=(ENTER USERID), USERID.
SCAN=YES,THEN=CONT,
ELSE=WAIT

WAIT1 WAIT
* Interrupts message generation.
MSG1 TEXT (ID02) Enters user ID ID02.
WTO2 WTO (Logging on TSO as), Sends message to console.

(ID02)
ENTER1 ENTER Sets ENTER AID byte.
2 IF LOC=RU+0, Tests for characters ENTER

TEXT=(ENTER LOGON), LOGON.
SCAN=YES,THEN=CONT

WAIT2 WAIT
* Interrupts message generation.
MSG2 TEXT (PW02) Enters user password PW02.
ENTER2 ENTER Sets ENTER AID byte.
3 IF LOC=RU+0, Tests for characters ISPF/PDF

TEXT=(ISPF/PDF), PRIMARY.
(PRIMARY),SCAN=YES,
THEN=CONT

4 IF LOC=RU+0,TEXT=(READY), Tests for characters READY.
SCAN=YES,THEN=CISPFDECK

WAIT3 WAIT
* Interrupts message generation.
WTO3 WTO (Logged on and), Sends message to console.

(received ISPF Primary),
(Menu)

ENDTXT End of INITSESS.

*
ISPFDECK MSGTXT
* Beginning of ISPFDECK.

256 Creating Workload Simulator Scripts

* ISPF deck simulates SLU accessing ISPF and then waiting for the ISPF
* primary menu to be returned before continuing message generation.
*
WTO1 WTO (STARTING $MSGTXTID$) Sends message to console.
MSG1 TEXT (ISPF) Enters ISPF.
ENTER1 ENTER Sets ENTER AID byte.
1 IF LOC=RU+0, Tests for characters ISPF/PDF

TEXT=(ISPF/PDF), PRIMARY.
(PRIMARY),SCAN=YES,
THEN=CONT

WAIT1 WAIT
* Interrupts message generation.
WTO2 WTO (Logged on and), Sends message to console.

(received),
(ISPF Primary Menu)

ENDTXT End of ISPFDECK.

*
LOGOFF MSGTXT
* Beginning of LOGOFF.
* The following message generation deck exits ISPF and logs the LU
* off TSO.
*
WTO1 WTO (Starting $MSGTXTID$) Sends message to console.
MSG1 TEXT (X) Enter text to exit ISPF.
1 IF LOC=RU+0,TEXT=(READY), Tests for characters READY.

SCAN=YES,THEN=CONT
WAIT1 WAIT
* Interrupts message generation.
MSG2 TEXT (LOGOFF) Enter text LOGOFF.
WTO2 WTO (Logged off TSO) Sends message to console.
WAIT2 WAIT
* Interrupts message generation.
OPCMND1 OPCMND (ZEND) Specifies operator command ZEND.

ENDTXT End of LOGOFF.

*
CLEAR MSGTXT
* Beginning of CLEAR.
* WSim calls the following message generation deck to clear the screen
* when ’***’ appears in the request unit (RU+0).
*
CLEAR1 CLEAR Clears the screen.

ENDTXT End of CLEAR.

Storing your scripts
To store your scripts in the data sets that WSim uses to perform simulations, you
can use the STL Translator, thePreprocessor or the ITPSYSIN utility program, or
you can use your editor to enter the scripts directly into the appropriate data sets.
It is recommended that you use the Preprocessor to store your network definition
and decks because it checks the syntax of your statements. In addition, the
Preprocessor provides several reports, including an indication of where errors
occurred and an estimate of the amount of storage required to store the network
control blocks. ITPSYSIN also stores your scripts in the appropriate data sets but
does not check the syntax of your statements. If you use STL to create your scripts
and you include the network definition in your STL input, the STL Translator
invokes thePreprocessor for you.

Using the preprocessor
The Preprocessor stores the network definition and message generation decks in
the data sets named in the JCL or TSO CLIST used to run the Preprocessor. The
data set for the network definition is named by the INITDD DD statement in the
JCL. The data set for the message generation decks is named by the MSGDD DD

Chapter 19. Integrating decks with network definitions 257

statement in the JCL. If you want, you can use the same data set for both your
network definition and message generation decks.

To use the Preprocessor, place all the message generation decks after the last
statement in the network definition in your input sequential data set. The data set
you place them in must be referenced by the SYSIN DD statement in the JCL or
the ALLOC DDNAME(SYSIN) statement in TSO.

Start the Preprocessor by running the WSim load module ITPENTER with the
parameter PREP specified. If the Preprocessor detects no syntax errors, the network
definition and message generation decks are stored in the appropriate data sets. If
there are syntax errors, the Preprocessor provides a report indicating where the
errors occurred. When Preprocessor is finished processing, you receive a return
code indicating whether the program has succeeded or failed. For a list of return
codes, see WSim Messages and Codes.

You can include multiple networks in the input to the Preprocessor or specify that
a network definition that has already been preprocessed is not to be rewritten to
the INITDD data set. You can also replace any members of the data sets that have
already been preprocessed.

See WSim Utilities Guide for complete instructions for using the Preprocessor.

Using the ITPSYSIN utility program
ITPSYSIN stores the network definition and message generation decks in the
appropriate data sets without checking syntax. ITPSYSIN runs much faster than
the Preprocessor, providing a quick method for storing your scripts. Use ITPSYSIN
any time you do not need to check syntax, for example, when storing previously
processed networks or automatically generated networks. If you use ITPSYSIN to
store a script for a simulation you are ready to run, syntax is checked when you
initialize the network. In this way, you can avoid checking the syntax twice.

To use ITPSYSIN, place your message generation decks in a sequential data set
after the last statement in your network definition. As with the Preprocessor, the
data set that contains your network definition and decks is referenced by the
SYSIN DD statement in the JCL or the ALLOC DDNAME(SYSIN) statement in
TSO.

When you run ITPSYSIN, your network definition and your message generation
decks are placed in the appropriate data set. After ITPSYSIN is complete, you
receive a return code indicating whether the program has succeeded or failed.

Refer to WSim Utilities Guide for complete information about running the ITPSYSIN
utility program.

258 Creating Workload Simulator Scripts

Chapter 20. Analyzing simulation results

When you run a simulation, you can use WSim output and online facilities to
analyze the results. WSim produces certain types of output automatically; other
types can be requested with operator commands or by running one of the WSim
utilities. With the online facilities provided by WSim, you can use online displays
to monitor the progress of the test.

When you use WSim reports and displays, remember that WSim is an external
driver; it acts like a terminal operator typing at a terminal. For this reason, WSim
reports and displays do not provide specific information about the internal
workings of your system. To obtain this information, use the same type of
monitoring programs during the test that you would use if you were testing your
system without WSim.

This chapter provides information about running a simulation and describes the
following WSim output and online facilities:
v WSim output

– Using operator reports
– Using the log data set

- The Loglist Utility
- The Log Compare Utility
- The Response Time Utility.

v Online facilities
– Display Monitor Facility
– Response-Time Statistics Facility.

The chapter also provides detailed examples of selected WSim reports and online
displays. Each example resulted from a simulation based on the script presented in
Chapter 19, “Integrating decks with network definitions,” on page 247.

Running a simulation
After you check the syntax of your script and store the network definition and the
message generation decks in the appropriate data sets, you are ready to run a
simulation. As mentioned in “Developing scripts” on page 103, your first
simulation should use a small network definition and a simple message generation
deck. When this simulation runs correctly, you can gradually make the network
definition more complex and add more message generation decks.

The steps required to run a simulation are described in WSim User's Guide; it
provides detailed information about running WSim. These books also provide
information about using the various features available when operating WSim, such
as the Display Monitor Facility.

© Copyright IBM Corp. 1989, 2015 259

Using WSim output
WSim output can help you understand how WSim interacts with the system under
test. It is especially useful when you debug scripts or when you want to ensure
that the simulation is proceeding as expected.

WSim provides the following output to help analyze your simulations:
v Operator reports that indicate what is happening during operation
v The log data set that contains complete records of the test run. You can analyze

the log data set with the following utilities:
– The Loglist Utility, which lists the WSim log data set in a formatted report.
– The Log Compare Utility, which compares the 3270 display records from two

WSim log data sets and reports when a difference is detected.
– The Response Time Utility, which provides detailed statistical analysis of the

response times.

Using operator reports
You can use operator reports to determine what is happening during a simulation.
Some operator reports, such as end of run reports, are printed automatically; you
can obtain others by issuing operator commands during the simulation or by
coding an option on the NTWRK statement.

This section briefly describes the following types of operator reports:
v Interval reports
v End of run reports
v Trace reports
v Inactivity Report.

The examples of each report included in the following sections resulted from
running the sample script introduced in Chapter 19, “Integrating decks with
network definitions,” on page 247. To view the sample script, see “Understanding
the sample script” on page 255.

For additional information about operator reports, see WSim User's Guide.

Interval reports
Interval reports provide information about the current activity and status of each
simulated resource in the network. You can use these reports to monitor what is
happening within the simulated network. For example, you can use interval
reports to ensure that a specific terminal is sending and receiving messages.

Figure 24 on page 261 illustrates the interval report that resulted from running the
sample script.

260 Creating Workload Simulator Scripts

End of run reports
Ends of run reports are a type of interval report that provides summary data about
the activity and status of each resource during the simulation. You can use them to
obtain general information about what happened during the test, and they print
automatically at the end of each run.

Figure 25 illustrates the end of run report that resulted from running the sample
script.

Trace reports
You can use trace reports to obtain traces of the information transmitted or
received between the WSim control program and the system under test. This
information can help you debug your network definition statements and message
generation decks.

For more information about trace reports, see WSim User's Guide.

The inactivity report
The Inactivity Report contains information on the status of terminals and devices
in the network. You can use this report to find problems in your network. For
example, you can know whether a particular terminal is active or inactive by
seeing the Inactivity Report. It includes the following information:
v Last message transmitted
v Last message received
v Time of the last message transmitted
v Time of the last message received
v Name of the message generation deck, if any
v Response field coded on the TEXT statement, if any
v Indication of whether the device was last transmitting or receiving.

INTERVAL REPORT
NETWORK SAMP1 Sample Network 1 NTWRKUTI 100

STATUS MESSAGES ADDRESSES POLLS NEGATIVE RESPONSES ISOLATED PACING
RECEIVED SENT RECEIVED RECEIVED RESPONSES RECEIVED SENT RECEIVED SENT

(RR’S SENT) DEF EXC DEF EXC
VTAMAPPL WSIMAPPL S
LU SLU-1 A 17 6 0 0 0 1 0 17 0 0 0
VTAMAPPL TOTALS 17 0 0 0 0 0

6 0 1 17 0
CUMULATIVE TOTALS 17 0 0 0 0 0

6 0 1 17 0
INTERVAL TOTALS 17 0 0 0 0 0

6 0 1 17 0
RATE (PER MINUTE) 17 0 0 0 0 0

6 0 1 17 0

Figure 24. WSim Interval Report

END OF RUN REPORT
NETWORK SAMP1 Sample Network 1 NTWRKUTI 100

STATUS MESSAGES ADDRESSES POLLS NEGATIVE RESPONSES ISOLATED PACING
RECEIVED SENT RECEIVED RECEIVED RESPONSES RECEIVED SENT RECEIVED SENT

(RR’S SENT) DEF EXC DEF EXC
VTAMAPPL WSIMAPPL
LU SLU-1 52 18 0 0 0 3 0 52 0 0 0
VTAMAPPL TOTALS 52 0 0 0 0 0

18 0 3 52 0
CUMULATIVE TOTALS 52 0 0 0 0 0

18 0 3 52 0

Figure 25. WSim End of Run Report

Chapter 20. Analyzing simulation results 261

Note: The Inactivity Report is time stamped so that you can determine how long a
terminal has been inactive.

For more information about this report, refer to WSim User's Guide, which also
provides a sample Inactivity Report. For a list of the criteria used to determine if a
terminal is active or inactive, refer to Part 1, “Defining WSim networks,” on page
1.

Using the log data set
The log data set stores all data transmitted or received by a network’s simulated
resources during a simulation. The message logging facility that writes data to the
log data set is active by default for every resource in the network. If you do not
want messages logged for certain resources, you can deactivate message logging
for an entire network by specifying MLOG=NO on the NTWRK network definition
statement. You can also code the MLOG operand on the APPCLU, VTAMAPPL, or
TCPIP network definition statements.

Although you do not use the log data set directly, you can write user exit routines
to read the log data set and print information about the simulation. For more
information about writing user exit routines, refer to WSim User Exits.

As discussed in the following sections, you can also format and analyze the log
data set with three utilities provided by WSim:
v The Loglist Utility
v The Log Compare Utility
v The Response Time Utility.

With the output from these utilities, you can debug scripts and analyze the results
of a simulation.

In general, you do not need to know how WSim logs and time stamps messages to
use the log data set. However, you might find this information helpful as you
debug your scripts or analyze response times. For more information about how
messages are logged and time stamped, see WSim Utilities Guide.

Formatting the log data set with the Loglist Utility
The Loglist Utility formats and prints the records in the log data set. You can
specify the types of records you want to see, and you can limit the resources for
which records are printed. With these capabilities, you can gain specific
information about the behavior of your network.

You can use the formatted records produced by the Loglist Utility to debug your
scripts and to learn about your network. For example, you can determine whether
new application program functions executed correctly. You can also obtain an
estimate of your system's performance by using the time stamps in each record to
compute the response times between the messages transmitted and received by the
simulated terminals.

One feature of the Loglist Utility that is especially helpful is the printing of screen
image records. The images are updated each time a message is sent or received by
a device, and you can tell WSim to write the image to the log each time it is
updated.

When the simulation is complete, you can use the Loglist Utility to format and
print these screen images. The output of the screen images looks the same as the

262 Creating Workload Simulator Scripts

images you would see on the real device. You'll find it helpful to use these images
when you are trying to get a new message generation deck to work because screen
images are easier to understand than the raw 3270 data stream.

The following example shows the input file used to run the Loglist Utility after
running the sample script:
RUN
END

Figure 26 illustrates the beginning of the Loglist Utility output; Figure 27 illustrates
another part of the output, showing the first panel for ISPF.

WSIM LOGLIST OUTPUT

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENC
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

--
12484431 0096031 11000000 CNSL 0800 000000 7

--
12484458 0096031 11000000 CNSL 0800 000000 49

ITP029I INITIALIZATION COMPLETE FOR NETWORK SAMP1
--

12490631 0096031 11000000 CNSL 0800 000000 1
--

12490650 0096031 11000000 CNSL 0800 000000 29
ITP006I NETWORK SAMP1 STARTED

--
SAMP1 WSIMAPPL SLU-1 12490651 0096031 11000000 MTRC 0100 083060 53 E2 INITSESS 00 0

ITP447I MSG GEN ENTERED: STMT# 00001 OF DECK INITSESS
--

12490651 0096031 11000000 CNSL 0800 000000 51
ITP137I SAMP1 SLU -00001 - Starting INITSESS

--

WSIM LOGLIST OUTPUT
--
SAMP1 WSIMAPPL SLU-1 12492819 12492820 12492820 RECV 8000 080000 1084 E2 ISPFDECK 00 82

RECV (DATA) REQUEST
TH 2C0001010009 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=9
RH 038020 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=DEF1

INDICATORS= CHANGE DIRECTION
RU F1C31140 401DF83C 40D86040 40C9E2D7 C661D7C4 C640D7D9 C9D4C1D9 E840D6D7 *1C. .8. Q- ISPF/PDF PRIMARY OP*

00000020 E3C9D6D5 40D4C5D5 E440403C C150601D E8D6D7E3 C9D6D540 407E7E7E 6E1DC83C *TION MENU .A&-.YOPTION ===>.H.*
00000040 C25F001D 601DE83C C35C401D 60E4E2C5 D9C9C440 40406040 E3D7D5E2 F0F24040 *B–..-.Y.C* .-USERID - WSIM02 *
00000060 1DE84040 40F0401D 60C9E2D7 C640D7C1 D9D4E240 406040E2 97858389 86A840A3 *.Y 0 .-ISPF PARMS - Specify t*
00000080 85999489 95819340 81958440 A4A28599 40978199 819485A3 8599A240 40401D60 *erminal and user parameters .-*
000000A0 E3C9D4C5 3CC4F640 6040F1F1 7AF4F940 40401DE8 404040F1 401D60C2 D9D6E6E2 *TIME.D6 - 11:49 .Y 1 .-BROWS*
000000C0 C53CC5D3 406040C4 89A29793 81A840A2 96A49983 85408481 A3814096 994096A4 *E.EL - Display source data or ou*
000000E0 A397A4A3 409389A2 A3899587 A2401D60 E3C5D9D4 C9D5C1D3 406040F3 F2F7F840 *tput listings .-TERMINAL - 3278 *
00000100 4040401D E8404040 F2401D60 C5C4C9E3 3CC6E340 6040C399 8581A385 40969940 * .Y 2 .-EDIT.FT - Create or *
00000120 83888195 878540A2 96A49983 85408481 A3813CC7 4C401D60 D7C640D2 C5E8E240 *change source data.G< .-PF KEYS *
00000140 406040F2 F43CC760 401DE840 4040F340 1D60E4E3 C9D3C9E3 C9C5E240 40406040 * - 24.G- .Y 3 .-UTILITIES - *
00000160 D7859986 96999440 A4A38993 89A3A840 86A49583 A3899695 A23CC8F0 401DE840 *Perform utility functions.H0 .Y *
00000180 4040F440 1D60C6D6 D9C5C7D9 D6E4D5C4 40406040 C995A596 92854093 819587A4 * 4 .-FOREGROUND - Invoke langu*
000001A0 81878540 97999683 85A2A296 99A24089 95408696 99858799 96A49584 3C4A4040 *age processors in foreground.` *
000001C0 1DE84040 40F5401D 60C2C1E3 C3C83C4A D3406040 E2A48294 89A34091 96824086 *.Y 5 .-BATCH.`L - Submit job f*
000001E0 96994093 819587A4 81878540 97999683 85A2A289 95873C4B 50401DE8 404040F6 *or language processing..& .Y 6*
00000200 401D60C3 D6D4D4C1 D5C43C4B E3406040 C595A385 9940E3E2 D6408396 94948195 * .-COMMAND..T - Enter TSO comman*
00000220 84409699 40C3D3C9 E2E33C4C 60401DE8 404040F7 401D60C4 C9C1D3D6 C740E3C5 *d or CLIST.<- .Y 7 .-DIALOG TE*
00000240 E2E34060 40D78599 86969994 40848981 93968740 A385A2A3 8995873C 4DF0401D *ST - Perform dialog testing.(0 .*
00000260 E8404040 F8401D60 D3D440E4 E3C9D3C9 E3C9C5E2 6040D785 99869699 94409389 *Y 8 .-LM UTILITIES- Perform li*
00000280 82998199 A8408184 94899589 A2A39981 A3969940 A4A38993 89A3A840 86A49583 *brary administrator utility func*
000002A0 A3899695 A23C4F40 401DE840 4040F940 1D60C9C2 D440D7D9 D6C4E4C3 E3E26040 *tions.| .Y 9 .-IBM PRODUCTS- *
000002C0 C1848489 A3899695 819340C9 C2D44097 99968799 81944084 85A58593 96979485 *Additional IBM program developme*
000002E0 95A34097 999684A4 83A3A23C 5050401D E8404040 C1401D60 E3D7D5E2 61C1E3D7 *nt products.&& .Y A .-WSIM/ATP*
00000300 40404040 6040C995 A5969285 40A38885 40E3D7D5 E261C1E3 D740C584 89A39699 * - Invoke the WSIM/ATP Editor*
00000320 40869699 40D1A493 89853CD1 60401DE8 404040C3 401D60C3 C8C1D5C7 C5E23CD1 * for Julie.J- .Y C .-CHANGES.J*
00000340 F3406040 C489A297 9381A840 A2A49494 8199A840 96864083 88819587 85A24086 *3 - Display summary of changes f*
00000360 969940A3 8889A240 99859385 81A2853C D2F0401D E8404040 E3401D60 E3E4E3D6 *or this release.K0 .Y T .-TUTO*
00000380 D9C9C1D3 40404040 6040C489 A2979381 A8408995 86969994 81A38996 95408182 *RIAL - Display information ab*
000003A0 96A4A340 C9E2D7C6 61D7C4C6 3CD44040 1DE84040 40E7401D 60C5E7C9 E33CD4D3 *out ISPF/PDF.M .Y X .-EXIT.ML*
000003C0 406040E3 85999489 9581A385 40C9E2D7 C640A4A2 89958740 93968740 81958440 * - Terminate ISPF using log and *
000003E0 9389A2A3 40848586 81A493A3 A23CD550 401DE83C D660401D 60C595A3 85991DE8 *list defaults.N& .Y.O- .-Enter.Y*
00000400 C5D5C41D 60839694 94819584 40A39640 A3859994 899581A3 8540C9E2 D7C64B3C *END.-command to terminate ISPF..*
00000420 D7F0401D E83CD940 401DE83C 40400011 C15E13 *P0 .Y.R .Y. ..A;. *

--
SAMP1 WSIMAPPL SLU-1 12492820 0096031 11000000 MTRC 0100 083000 67 E2 ISPFDECK 00 83

ITP429I IN IF CLE (NETWORK IF) NOT MET - ELSE ACTION NOT CODED
ITP427I IN IF 0 (ISPFDECK 00004) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

--
SAMP1 WSIMAPPL SLU-1 12492821 12492824 12492219 XMIT 8000 880000 9 E2 ISPFDECK 00 85

Figure 26. Beginning of WSim Loglist Utility Report

Figure 27. WSim Loglist Utility Report including ISPF panel

Chapter 20. Analyzing simulation results 263

XMIT RESPONSE
TH 2C0001010009 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=9
RH 838000 RESPONSE FM DATA ONLY IN CHAIN RESPONSE TYPE=DEF1

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| ----------------------- ISPF/PDF PRIMARY OPTION MENU ------------------------| 1
2| OPTION ===> | 2
3| USERID - WSIM02 | 3
4| 0 ISPF PARMS - Specify terminal and user parameters TIME - 11:49 | 4
5| 1 BROWSE - Display source data or output listings TERMINAL - 3278 | 5
6| 2 EDIT - Create or change source data PF KEYS - 24 | 6
7| 3 UTILITIES - Perform utility functions | 7
8| 4 FOREGROUND - Invoke language processors in foreground | 8
9| 5 BATCH - Submit job for language processing | 9

10| 6 COMMAND - Enter TSO command or CLIST |10
11| 7 DIALOG TEST - Perform dialog testing |11
12| 8 LM UTILITIES- Perform library administrator utility functions |12
13| 9 IBM PRODUCTS- Additional IBM program development products |13
14| A WSIM - Invoke WSIM |14
15| C CHANGES - Display summary of changes for this release |15
16| T TUTORIAL - Display information about ISPF/PDF |16
17| X EXIT - Terminate ISPF using log and list defaults |17
18| |18
19| Enter END command to terminate ISPF. |19
20| |20
21| |21
22| |22
23| |23
24| |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(2) COLUMN(15) AID: NULL DISPLAY AID WHEN LOGGED: BEGINNING OF MSG GEN
DIMENSIONS: (24, 80)

--
SAMP1 WSIMAPPL SLU-1 12492921 0096031 11000000 MTRC 0100 083060 53 E2 ISPFDECK 00 87

ITP447I MSG GEN ENTERED: STMT# 00006 OF DECK ISPFDECK
--

12492921 0096031 11000000 CNSL 0800 000000 74
ITP137I SAMP1 SLU -00001 - Logged on and received ISPF Primary Menu

--
SAMP1 WSIMAPPL SLU-1 12492921 0096031 11000000 MTRC 0100 083020 80 E2 INITSESS 00 88

ITP452I RETURN FROM STMT# 00007 OF DECK ISPFDECK TO STMT# 00015 OF DECK INITSESS
--
SAMP1 WSIMAPPL SLU-1 12492921 0096031 11000000 MTRC 0100 083020 80 E2 INITSESS 00 88

ITP137I SAMP1 SLU -00001 - Logged on and received ISPF Primary Menu
--
SAMP1 WSIMAPPL SLU-1 12492921 0096031 11000000 MTRC 0100 083020 48 E2 LOGOFF 00 89

ITP449I MSG GEN CONTINUES: DECK LOGOFF STARTED
--
SAMP1 WSIMAPPL SLU-1 12492921 0096031 11000000 MTRC 0100 083020 48 E2 LOGOFF 00 89

ITP137I SAMP1 SLU -00001 - Starting LOGOFF
--
SAMP1 WSIMAPPL SLU-1 12492921 0096031 11000000 MTRC 0100 083020 53 E2 LOGOFF 00 90

ITP448I MSG GEN ENDED: STMT# 00005 OF DECK LOGOFF
--

Comparing 3270 display records with the Log Compare Utility
The Log Compare Utility compares 3270 display records from 2 log data sets and
reports when a difference is detected. You select the records to be compared and
the fields to be compared for each record. You can also request a set of reports that
identify the differences found between the display records. These reports can help
you verify whether an application has changed over a period or determine the
results of a regression test.

The Log Compare Utility also prints an Active Command List automatically after
each run. This report lists the commands you issued and the operand values that
were in effect during the run. The Log Compare Utility can also print more reports
that show you which display records were compared and the differences that were
detected.

The following example shows the input file used to run the Log Compare Utility:
REPORT R,S,C,D
RUN
END

When you use this input file, the Log Compare Utility provides the following
reports:
v Active Command List
v Complete Records List
v Compare List

264 Creating Workload Simulator Scripts

v Differences Report
v Summary Report.

Figure 28 illustrates the Log Compare Utility output that resulted after running the
sample script.

WSIM COMPARE UTILITY OUTPUT TIME 9.44.58, JANUARY 31, 2002 PAGE 1
--

Active Command List

--

Selection Commands Issued

There were no Selection commands issued for this run

Process Commands Issued

Command Command
Number Type Operands

------- ----------- --
REPORT RECORDS,COMPARES,DIFFERENCES,SUMMARY

--
Complete Records List

Master: NETWORK SAMP1 Test: NETWORK SAMP1
VTAMAPPL WSIMAPPL VTAMAPPL WSIMAPPL
DEV/LU SLU-00001 DEV/LU SLU-00001

--

MASTER Records

Sequence
Number MSGTXT Usage Reason

-------- ---------- ---------- ---
0 INITSESS Used
1 INITSESS Used
2 INITSESS Used
3 INITSESS Used
4 INITSESS Used
5 ISPFDECK Used
6 ISPFDECK Used
7 ISPFDECK Used
8 LOGOFF Used
9 LOGOFF Used

10 LOGOFF Used
11 LOGOFF Used
12 INITSESS Used
13 INITSESS Used
14 INITSESS Used
15 INITSESS Used
16 ISPFDECK Used
17 ISPFDECK Used
18 ISPFDECK Used
19 LOGOFF Used
20 LOGOFF Used
21 LOGOFF Used
22 LOGOFF Used
23 INITSESS Used
24 INITSESS Used
25 INITSESS Used
26 INITSESS Used
27 ISPFDECK Used
28 ISPFDECK Used
29 ISPFDECK Used
30 LOGOFF Used
31 LOGOFF Used
32 LOGOFF Used

TEST Records

Sequence
Number MSGTXT Usage Reason

-------- ---------- ---------- ---
0 INITSESS Used
1 INITSESS Used
2 INITSESS Used
3 INITSESS Used
4 INITSESS Used
5 ISPFDECK Used
6 ISPFDECK Used
7 ISPFDECK Used
8 LOGOFF Used
9 LOGOFF Used

10 LOGOFF Used
11 LOGOFF Used
12 INITSESS Used
13 INITSESS Used
14 INITSESS Used
15 INITSESS Used
16 ISPFDECK Used
17 ISPFDECK Used

Figure 28. WSim Log Compare Utility reports

Chapter 20. Analyzing simulation results 265

18 ISPFDECK Used
19 LOGOFF Used
20 LOGOFF Used
21 LOGOFF Used
22 LOGOFF Used
23 INITSESS Used
24 INITSESS Used
25 INITSESS Used
26 INITSESS Used
27 ISPFDECK Used
28 ISPFDECK Used
29 ISPFDECK Used
30 LOGOFF Used
31 LOGOFF Used
32 LOGOFF Used

--
Compare List

Master: NETWORK SAMP1 Test: NETWORK SAMP1
VTAMAPPL WSIMAPPL VTAMAPPL WSIMAPPL
DEV/LU SLU-00001 DEV/LU SLU-00001

--

MASTER TEST ALL
Sequence Number Sequence Number Checkonly Mask Mask Result REASON FOR DIFFERENCE
--------------- --------------- --------- ----- ---- --------- ---

0 0 Equal
1 1 Equal
2 2 Equal
4 4 Equal
5 5 Equal
6 6 Equal
7 7 Equal
8 8 Equal
9 9 Equal

10 10 Equal
11 11 Equal
12 12 Equal
13 13 Equal
14 14 Equal
15 15 Equal
16 16 Equal
17 17 Equal
18 18 Equal
19 19 Equal
20 20 Equal
21 21 Equal
22 22 Equal
23 23 Equal
24 24 Equal
25 25 Equal
26 26 Equal
27 27 Equal
28 28 Equal
29 29 Equal
30 30 Equal
31 31 Equal
32 32 Equal

--
Differences Report

Master: NETWORK SAMP1 Test: NETWORK SAMP1
VTAMAPPL WSIMAPPL VTAMAPPL WSIMAPPL
DEV/LU SLU-00001 DEV/LU SLU-00001

--
No differences were found for this resource

--

Summary Report

--

Synchronization Sequence
Result #Records Processed #Records #Differences Run SYNCPOINT Number

Resource (RC) MASTER TEST Compared Detected Aborted Attempted Command Used MASTER TEST
--- ------ -------- -------- -------- ------------ ------- --------- ------------ -----------
NETWORK SAMP1
VTAMAPPL WSIMAPPL
DEV/LU SLU-00001 0 33 33 33 0 NO NO

--

Determining response times with the Response Time Utility
The Response Time Utility is a postprocessor that analyzes the message log data
set and measures the time it takes to enter a command at a simulated terminal and
receive a response from the system under test. You use this utility when you need
detailed statistics about response times following a simulation.

The Response Time Utility uses the time stamps from a pair of transmit and
receive records and calculates response times for each terminal. Although the
Response Time Utility uses a set of default rules for determining the transmit and
receive record pairings, you can change these rules by specifying parameters for
the utility to use when selecting the transmit and receive records. You can also

266 Creating Workload Simulator Scripts

define logical transactions to the Response Time Utility by specifying the messages
that mark the beginning and end of the transaction. These transactions can include
any number of messages.

Because the Response Time Utility determines the transmit-receive pairs for a
particular terminal, be sure that the terminals in your network definition have
unique names.

Note: To monitor response time during a simulation, WSim provides the
Response-Time Statistics (RSTATS) facility. For more information about RSTATS,
see “Using the Response-Time Statistics Facility” on page 269.

For more information about using the Response Time Utility, refer to WSim Utilities
Guide.

The following example shows the input file used to run the Response Time Utility:
REPORT LEVEL=TERM,TERM=(TGRAPH,CGRAPH,GRAPH,NOTRANS,LIST)
RUN
END

The commands issued by this input file specify that a response time report is to be
printed for each terminal, group of terminals, and for the summary of all
terminals. In addition, the file provides a Time Graph, Cumulative Distribution
Graph, Frequency Distribution Graph, List of Computed Response Times, and a
single report for all transaction types.

Figure 29 illustrates the Response Time Utility output that resulted after running
the sample script.

WSIM RESPONSE TIME ANALYSIS
--
TERMINAL REPORT NETWORK ALL NETWORKS PROCESS SYSTEM TIME LIMITS ALL

VTAMAPPL WSIMAPPL EXIT START TIME 124907
TERMINAL SLU-1 TERMTYPE LU2 END TIME 125035

--
RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT

0.06 1 0.07 2 0.43 1 0.78 1 0.81 1
1.32 1 1.37 1 1.41 1 1.47 1 1.57 1
1.67 1 1.70 1 1.75 1 1.89 1 3.42 1
3.94 1 5.12 1

MEAN RESPONSE 1.60 MESSAGES SENT 18 NUMBER OF RESPONSES 18
MEDIAN RESPONSE 1.44 AVERAGE LENGTH 13 PER MINUTE 12
MODE RESPONSE 0.07 PER MINUTE 12 RESPONSES DISCARDED 0
LOW RESPONSE 0.06 MESSAGES RECEIVED 35 VARIANCE 1.8355
HIGH RESPONSE 5.12 AVERAGE LENGTH 223 95 PERCENT CI --
AVERAGE QUEUE TIME 0.03 PER MINUTE 23
PERCENTILE RESPONSE TIME AVERAGE

90 3.42 1.23

WSIM RESPONSE TIME ANALYSIS
RESPONSE TIME FREQUENCY DISTRIBUTION

NETWORK 100 |---|
VTAMAPPL WSIMAPPL | |
TERMINAL SLU-1 | |

| |
| |

90 |---|
| |
| |
| |
| |

80 |---|
| |
| |
| |
| |

70 |---|
| |
| |
| |
| |

60 |---|
| |
| |
| |
| |

Figure 29. WSim Response Time Utility Report

Chapter 20. Analyzing simulation results 267

PERCENTAGE 50 |---|
| |

OF | |
| |

RESPONSES | |
40 |---|

| |
| |
| |
| |

30 |---|
| |
| |
| |
| |

20 |---|
| |
| * |
| * |
| * * * * |

10 |-----*-------------------------*-*---*---|
| * * * * |
| * * * * * * * * * * * * |
| * * * * * * * * * * * * |
| * * * * * * * * * * * * |

| + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + +
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

RESPONSE TIME (SECONDS) INCREMENT = 0.1 SECONDS
PERCENTAGE ABOVE LAST INCREMENT = 5.6

WSIM RESPONSE TIME ANALYSIS

CUMULATIVE RESPONSE TIME DISTRIBUTION
NETWORK 100 |---|
VTAMAPPL WSIMAPPL | |
TERMINAL SLU-1 | |

| * * * * * * * * * * |
| |

90 |---|
| * * * * * |
| |
| * * * * * * * * * * * * * * * * |
| |

80 |---|
| * |
| |
| |
| * |

70 |---|
| |
| |
| |
| * |

60 |---|
| |
| * |
| |
| |

PERCENTAGE 50 |---|
| |

OF | |
| * |

RESPONSES | |
40 |---|

| |
| |
| * * * * * |
| |

30 |---|
| * |
| |
| |
| * * * |

20 |---|
| |
| * * * * |
| |
| |

10 |---|
| |
| |
| |
| |

| + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + +
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

RESPONSE TIME (SECONDS) INCREMENT = 0.1 SECONDS

WSIM RESPONSE TIME ANALYSIS
NETWORK TIME GRAPH OF RESPONSES < MINIMUM
VTAMAPPL WSIMAPPL INTERVAL = 10 SEC * AVERAGE
TERMINAL SLU-1 INCREMENT= 0.1 SEC > MAXIMUM

RESPONSE TIME (SECONDS)
| |

TIME NUMBER OF | 1|
RESPONSES |0----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0|

12.49.10 1 | * |
12.49.20 2 | < * > |
12.49.30 1 | * |
12.49.40 2 | < * > |
12.49.50 3 | < * > |
12.50.00 1 | * |
12.50.10 2 | *> |
12.50.20 3 | < * > |
12.50.30 1 | * |
12.50.40 2 | < *> |

268 Creating Workload Simulator Scripts

WSIM RESPONSE TIME ANALYSIS
--
TERMGRP REPORT NETWORK ALL NETWORKS PROCESS SYSTEM TIME LIMITS ALL

VTAMAPPL WSIMAPPL EXIT START TIME 124907
TERMTYPE END TIME 125035

--
RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT

0.06 1 0.07 2 0.43 1 0.78 1 0.81 1
1.32 1 1.37 1 1.41 1 1.47 1 1.57 1
1.67 1 1.70 1 1.75 1 1.89 1 3.42 1
3.94 1 5.12 1

MEAN RESPONSE 1.60 MESSAGES SENT 18 NUMBER OF RESPONSES 18
MEDIAN RESPONSE 1.44 AVERAGE LENGTH 13 PER MINUTE 12
MODE RESPONSE 0.07 PER MINUTE 12 RESPONSES DISCARDED 0
LOW RESPONSE 0.06 MESSAGES RECEIVED 37 VARIANCE 1.8355
HIGH RESPONSE 5.12 AVERAGE LENGTH 212 95 PERCENT CI --
AVERAGE QUEUE TIME 0.03 PER MINUTE 25
PERCENTILE RESPONSE TIME AVERAGE

90 3.42 1.23

WSIM RESPONSE TIME ANALYSIS TIME 13.53.54, JANUARY 31, 2002 PAGE 8
--
SUMMARY REPORT NETWORK ALL NETWORKS PROCESS SYSTEM TIME LIMITS ALL

EXIT START TIME 124907
TERMTYPE END TIME 125035

--
RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT RESPONSE TIME COUNT

0.06 1 0.07 2 0.43 1 0.78 1 0.81 1
1.32 1 1.37 1 1.41 1 1.47 1 1.57 1
1.67 1 1.70 1 1.75 1 1.89 1 3.42 1
3.94 1 5.12 1

MEAN RESPONSE 1.60 MESSAGES SENT 18 NUMBER OF RESPONSES 18
MEDIAN RESPONSE 1.44 AVERAGE LENGTH 13 PER MINUTE 12
MODE RESPONSE 0.07 PER MINUTE 12 RESPONSES DISCARDED 0
LOW RESPONSE 0.06 MESSAGES RECEIVED 37 VARIANCE 1.8355
HIGH RESPONSE 5.12 AVERAGE LENGTH 212 95 PERCENT CI --
AVERAGE QUEUE TIME 0.03 PER MINUTE 25
PERCENTILE RESPONSE TIME AVERAGE

90 3.42 1.23

Using online facilities
WSim provides two online facilities that enable you to monitor a simulation:
v With the Display Monitor Facility, you can watch the messages sent and received

by a simulated 3270 terminal.
v The RSTATS facility provides response time calculations for the simulated

resources. The operator can access these values online at the operator console.

The following sections describe how you can use these facilities to detect errors as
they happen and to determine response times during a simulation.

Using the Display Monitor Facility
The Display Monitor Facility is a VTAM application program within WSim that
displays simulated 3270 display images on a monitor that is accessible by VTAM.
It helps you develop and debug scripts by enabling you to watch the messages
being sent and received by a simulated 3270 terminal. This is useful when you are
trying to get a new message generation deck to work since you can detect errors as
they happen. The Display Monitor Facility helps you detect the following types of
errors:
v Invalid cursor position
v Incorrect screen format
v Hung devices.

For more information about the WSim display monitor facility, refer to WSim
User's Guide.

Using the Response-Time Statistics Facility
The Response-Time Statistics (RSTATS) Facility is an online response statistics
reporting facility unrelated to the Response Time Utility. It enables you to monitor
the response times of simulated devices while WSim is running by measuring the
time it takes to transmit data from a simulated terminal and receive a response
from the system under test. You can use it to provide online response time

Chapter 20. Analyzing simulation results 269

calculations for terminals simulated by WSim. This is especially helpful when you
want to ensure that messages are being transmitted and received by the simulated
resources at reasonable rates.

RSTATS collects online response-time statistics only for those simulated resources
that generate messages. These include devices and logical units. WSim supports
the RSTATS feature for all terminal types.

For more information about using RSTATS, refer to WSim User's Guide.

Figure 30 illustrates an example of the online statistics that resulted from running
the sample script.

ITP190I RESPONSE TIME STATISTICS FOR SLU-1
ITP190I AT 12.49.13.13
ITP190I PROCESS SYSTEM PROCESS ACTUAL
ITP190I AVERAGE 0.09 0.32
ITP190I MOST RECENT 0.11 0.42
ITP190I LOW 0.02 0.03
ITP190I HIGH 0.15 0.51
ITP190I TOTAL RESPONSES 15 14

Figure 30. Example of RSTATS online Response-Time Utility output

270 Creating Workload Simulator Scripts

Chapter 21. 3270 extended character set

The 3270 Data Analysis/APL Character Set expands the character set of 3270
terminals by allowing the display of 80 APL-specific characters and 35 TN print
train characters not included in the normal character set. This appendix is a list of
these extended characters, presented in two different ways. Table 13 shows which
hexadecimal values you should use forWSim to transmit specific 2-character
sequences. Table 14 on page 273 shows the WSim internal hexadecimal value
translated into the terminal buffer for each received 2-character sequence.

Table 13. 3270 Data Analysis/APL sequences transmitted for WSim codes

WSim Code Extended Character Set Code Name

08 1D8C superscript minus

0A 1D8A subscript 1

0D 1D8D superscript (

0E 1D8E superscript plus

0F 1D8F DA cross

10 1D90 open brace

18 1D1E plus or minus

1A 1D9A subscript 2

1B 1D9B lozenge

1D 1D9B superscript)

1F 1D9F histogram

20 1DA0 close brace

21 1DA1 degree

2A 1DAA subscript 3

2B 1DAB lower left corner

2C 1DAC upper left corner

2D 1DAD left junction

2E 1DAE right junction

2F 1DAF bullet

30 1DB0 superscript 0

31 1DB1 superscript 1

32 1DB2 superscript 2

33 1DB3 superscript 3

34 1DB4 superscript 4

35 1D15 superscript 5

36 1DB6 superscript 6

37 1DB7 superscript 7

38 1DB8 superscript 8

39 1D1B9 superscript 9

3A 1DBA subscript n

© Copyright IBM Corp. 1989, 2015 271

Table 13. 3270 Data Analysis/APL sequences transmitted for WSim codes (continued)

WSim Code Extended Character Set Code Name

3B 1DBB lower right corner

3C 1DBC upper right corner

3D 1DBD top junction

3E 1DBE bottom junction

3F 1DBF extended dash

41 1D81 A underscore

42 1D82 B underscore

43 1D83 C underscore

44 1D84 D underscore

45 1D85 E underscore

46 1D86 F underscore

47 1D87 G underscore

48 1D88 H underscore

49 1D89 I underscore

51 1D91 J underscore

52 1D92 K underscore

53 1D93 L underscore

54 1D94 M underscore

55 1D95 N underscore

56 1D96 O underscore

57 1D97 P underscore

58 1D98 Q underscore

59 1D99 R underscore

62 1DA2 S underscore

63 1DA3 T underscore

64 1DA4 U underscore

65 1DA5 V underscore

66 1DA6 W underscore

67 1DA7 X underscore

68 1DA8 Y underscore

69 1DA9 Z underscore

71 1D6A and

72 1DC3 dieresis

78 1D6B or

80 1D7B tilde

8B 1DC2 down

CA 1D4A nand

CB 1D4B nor

CD 1D4E circle stile

CF 1D4F circle slope

272 Creating Workload Simulator Scripts

Table 13. 3270 Data Analysis/APL sequences transmitted for WSim codes (continued)

WSim Code Extended Character Set Code Name

DA 1DD2 I beam

DB 1DD3 quote dot

DC 1DD6 del stile

DD 1DD7 delta stile

DE 1D5A quote quad

DF 1D5B cap null

EA 1D5E slash bar

EB 1D5F slope bar

ED 1DE2 circle bar

EE 1DE3 domino

EF 1DE6 top null

FB 1DC6 del tilde

FC 1DF3 delta underscore

FD 1DC7 log

FE 1DE7 base null

Table 14. WSim code for received 3270 Data analysis/APL sequences

Extended Character Set Code WSim Code Name

1D8C 08 superscript minus

1D8A 0A subscript 1

1D8D 0D superscript (

1D8E 0E superscript plus

1D8F 0F DA cross

1D90 10 open brace

1D1E 18 plus or minus

1D9A 1A subscript 2

1D9B 1B lozenge

1D9B 1D superscript)

1D9F 1F histogram

1DA0 20 close brace

1DA1 21 degree

1DAA 2A subscript 3

1DAB 2B lower left corner

1DAC 2C upper left corner

1DAD 2D left junction

1DAE 2E right junction

1DAF 2F bullet

1DB0 30 superscript 0

1DB1 31 superscript 1

1DB2 32 superscript 2

Chapter 21. 3270 extended character set 273

Table 14. WSim code for received 3270 Data analysis/APL sequences (continued)

Extended Character Set Code WSim Code Name

1DB3 33 superscript 3

1DB4 34 superscript 4

1D15 35 superscript 5

1DB6 36 superscript 6

1DB7 37 superscript 7

1DB8 38 superscript 8

1D1B9 39 superscript 9

1DBA 3A subscript n

1DBB 3B lower right corner

1DBC 3C upper right corner

1DBD 3D top junction

1DBE 3E bottom junction

1DBF 3F extended dash

1D81 41 A underscore

1D82 42 B underscore

1D83 43 C underscore

1D84 44 D underscore

1D85 45 E underscore

1D86 46 F underscore

1D87 47 G underscore

1D88 48 H underscore

1D89 49 I underscore

1D91 51 J underscore

1D92 52 K underscore

1D93 53 L underscore

1D94 54 M underscore

1D95 55 N underscore

1D96 56 O underscore

1D97 57 P underscore

1D98 58 Q underscore

1D99 59 R underscore

1DA2 62 S underscore

1DA3 63 T underscore

1DA4 64 U underscore

1DA5 65 V underscore

1DA6 66 W underscore

1DA7 67 X underscore

1DA8 68 Y underscore

1DA9 69 Z underscore

1D6A 71 and

274 Creating Workload Simulator Scripts

Table 14. WSim code for received 3270 Data analysis/APL sequences (continued)

Extended Character Set Code WSim Code Name

1DC3 72 dieresis

1D6B 78 or

1D7B 80 tilde

1DC2 8B down

1D4A CA nand

1D4B CB nor

1D4E CD circle stile

1D4F CF circle slope

1DD2 DA I beam

1DD3 DB quote dot

1DD6 DC del stile

1DD7 DD delta stile

1D5A DE quote quad

1D5B DF cap null

1D5E EA slash bar

1D5F EB slope bar

1DE2 ED circle bar

1DE3 EE domino

1DE6 EF top null

1DC6 FB del tilde

1DF3 FC delta underscore

1DC7 FD log

1DE7 FE base null

Chapter 21. 3270 extended character set 275

276 Creating Workload Simulator Scripts

Part 5. Samples

© Copyright IBM Corp. 1989, 2015 277

278 Creating Workload Simulator Scripts

Chapter 22. Introduction

This chapter introduces Workload Simulator (WSim) and describes the types of
examples presented in this manual.

Sample installation networks
The sample installation network definitions supplied in the WSim sample data set
(WSIM.SITPSAMP on MVS) are simple, pre-defined networks that you can run
after performing the WSim installation procedure. Executing these definitions as
soon as possible after the installation is highly recommended for the following
reasons:
1. You can use the sample definitions without knowing much about WSim.
2. You do not have to write decks or network definitions before you perform any

WSim simulation.
3. If you are a new user, it is a quick way to learn the basics of WSim.
4. You can verify that many of your individual WSim network components are

working properly.
5. You can verify that the WSim installation process was successfully completed.
6. It introduces you to the following WSim utility programs:
v The Preprocessor
v The sample VTAM application (ITPECHO)
v The Loglist Utility
v The Response Time Utility.

Functionally equivalent STL procedures for the example message generation decks
are also provided. Therefore, you will be able to use either the message generation
decks, or the STL procedures (which you will translate into message generation
statements) when running these networks. See WSim Script Guide and Reference for
more information about this translation process.

Message scripting examples
The samples provided help you to write your own network definitions and
message generation decks. The examples show you how to write WSim network
configuration statements for the equipment you are simulating and WSim message
generation statements for the terminal operator actions you are simulating. The
notes after each example help you understand what each example does. Also
included, where applicable, are STL procedures which can be translated intoWSim
message generation statements using the STL translator.

AVMON example
This example describes the AVMON (Availability Monitor) sample network,
discusses the components of the network, and shows you how to modify the
network for your configuration.

© Copyright IBM Corp. 1989, 2015 279

280 Creating Workload Simulator Scripts

Chapter 23. Sample installation networks

This chapter describes a sample WSim network definition. The sample WSim test
network simulates a 3270 logical unit (LU) Type 2 which logs on to ITPECHO, the
WSim sample VTAM application program. Note that the network can be easily
modified to simulate other terminal types. You can run the sample test as an
ordinary job on a production system without dedicating the system to a test
environment. This is not a stress test. You can use this network to verify your
WSim installation.

The test network runs a WSim simulation via the VTAM application program
interface (API). Only active VTAMAPPL definitions are necessary. This is not an
actual installation procedure. Before attempting the test, install WSim as directed
in WSim User's Guide and the WSim Program Directory.

The ITPECHO sample VTAM application program
ITPECHO is a VTAM application program supplied with WSim as a sample
routine. It is not the same as WSim simulation through the VTAM API. This is a
separate utility program that can be run independently of WSim. Use ITPECHO to
help you learn about and plan your WSim configuration.

ITPECHO is essentially an “echo” program; it receives data from a terminal and
transmits the same data back to the terminal that issued the request. Terminal
types supported include 3270s (LU2) and any non-3270 devices that do not depend
on any specific data stream (such as LU0).

ITPECHO is easy and flexible to use, and is ideally suited for this installation test.
However, it might also become a part of regular WSim tests when an application
program is not running in the network subsystem to be tested. It provides a string
repetition feature that allows the terminal to request that a response of a certain
length be returned. In addition, this response can be repeated consecutively, and
the length can optionally be incremented with each repetition.

For complete information on the ITPECHO program itself, refer to WSim Utilities
Guide.

WSim as a VTAM application (INSTALL1)
These directions explain how to run the WSim sample network INSTALL1, which
simulates a logical unit Type 2 (LU2) through the VTAM application program
interface. You can run WSim and the ITPECHO application in the same CPU. The
simulated LU2 drives ITPECHO as if a real 3270 were in session. One possible real
CPU configuration is shown in Figure 31 on page 282. The network definition for
INSTALL1 is shown in “Sample installation network (INSTALL1)” on page 283.

© Copyright IBM Corp. 1989, 2015 281

Directions for an MVS system
When running WSim on MVS, you can choose to use the WSim/ISPF Interface or
to invoke WSim utilities by way of JCL or EXECs. The WSim/ISPF Interface
provides a panel-driven interface to the WSim utilities. Refer to WSim User's Guide
for information on installing the WSim/ISPF Interface and WSim Utilities Guide for
information on using the WSim/ISPF Interface.
1. Run the WSim Preprocessor using the INSTALL1 member of

WSIM.SITPSAMP as the SYSIN data. If you know that a particular BIND will
be required, change the DLOGMOD= operand value in the WSIMLU
statement to name the wanted logon mode name before preprocessing. Refer
to WSim Utilities Guide for sample JCL or EXECs to run the Preprocessor.

Note: If you will be using the STL procedure, shown in “STL procedure” on
page 285 instead of the message generation deck, you will need to translate
the STL procedure into message generation statements using the STL
Translator. Place the output from the translation into MSGDD so the message
generation deck will be ready for use. See WSim Script Guide and Reference for
more information on using the STL translator.

2. Define an “ITPECHO” application in your VTAM VTAMLST file. For example:
ITPECHO APPL

You do not have to use “ITPECHO” as the APPLID (application ID) for
ITPECHO. If you chose to use a different APPLID to run ITPECHO, you must
also do the following actions:
v Start ITPECHO in step 5 with the APPLID name as an execution parameter.
v Change the sample network WSIMLU LU RESOURCE= operand value to

match your APPLID.

You might want to create a new VTAMLST member just for WSim definitions.
This will become useful in the future.

3. Define the WSim simulated LU application “WSIMAPPL” in VTAMLST. For
example:
WSIMAPPL APPL

This definition may go into the same VTAMLST member used in step 2.
4. Activate the application IDs from steps 2 and 3 with the VTAM operator

command.
5. Start ITPECHO with the application ID used in its APPL definition.

S ITPECHO,APPLID=ITPECHO

Refer to WSim Utilities Guide for a sample execution PROC.

VTAM

ITPECHO

WSim LU

Operating System

Figure 31. Installation test 1 system configuration. ITPECHO “sees” a real 3270 terminal.

282 Creating Workload Simulator Scripts

6. Start WSim. Refer to WSim User's Guide for sample JCL and EXECs.
7. Enter the following WSim operator command:

I INSTALL1,S,L

This initializes, starts, and lists (in the SYSPRINT print file) the sample
network INSTALL1.

8. Let the network run if necessary, observing message rates and WSim
write-to-operator (WTO) messages. The terminal WSIMLU will log on to
ITPECHO automatically, and send messages that will be echoed back to the
terminal. This process will loop indefinitely.

9. End WSim with the WSim operator command:
ZEND

This will cancel the network and end the WSim job.
Run the following steps if you would like to analyze the log data set.

10. Run the Loglist Utility. Refer to WSim Utilities Guide for sample JCL and
EXECs.

11. Run the Response Time Utility. Refer to WSim Utilities Guide for sample JCL
and EXECs.

This concludes the sample WSim simulation under MVS using the VTAM
application program interface to simulate an LU2. You might want to repeat this
test to gain familiarity with other WSim operator commands and to use other
network definitions you created yourself.

Suggested exercise
Create a copy of network INSTALL1 named TEST1. Add another LU2 named
WSIMLU2 identical to WSIMLU and change the name on the NTWRK statement to
TEST1. You will also need to code PARSESS=YES on the ITPECHO APPL and
WSIMAPPL APPL definitions in your VTAMLST file. This allows multiple,
concurrent sessions for each of the APPL definitions. Run this new network. Both
of the simulated LUs will log on to ITPECHO. You can compare the results of this
run with those from the previous one.

Sample installation network (INSTALL1)
The following example shows the sample installation network, INSTALL1, and
message generation deck, INSTMTXT. This script is located in the WSim sample
data set as member INSTALL1 on MVS or file name INSTALL1 PREPIN under
VM.
INSTALL1 NTWRK HEAD=’SAMPLE NETWORK 1’,

**
* SAMPLE INSTALLATION TEST NETWORK 1: *
* VTAM API SIMULATION WITH ITPECHO *
**

UTI=500,
MSGTRACE=YES,
BUFSIZE=2048,
STLTRACE=YES,
LOGDSPLY=BOTH,
THKTIME=UNLOCK,
INIT=SEC,
OPTIONS=(DEBUG,CONRATE)

ITPECHO PATH INSTMTXT

Chapter 23. Sample installation networks 283

**
* ONE VTAM APPLICATION, ONE 3270 LU2 SESSION *
* DEFAULT SCREEN SIZE IS 24 X 80 *
* --> ADJUST VTAMAPPL NAME TO MATCH VTAM <-- *
* --> ADJUST LU DLOGMOD TO SELECT LOGMODE <-- *
**

WSIMAPPL VTAMAPPL
WSIMLU LU LUTYPE=LU2,

RESOURCE=ITPECHO,
DLOGMOD=D4A32782 (D6327802 POSSIBLE, TOO)

INSTMTXT MSGTXT PAD=’40’
**
* *
* SAMPLE MESSAGE TEXT DECK TO EXERCISE ITPECHO. *
* USED BY SAMPLE NETWORKS ’INSTALL1’ AND ’INSTALL2’. *
* *
**
STAY LABEL

00001 0 IF LOC=B+0, START OF TERMINAL BUFFER
TEXT=(WELCOME TO ITPECHO), LOOK FOR THE ’WELCOME’
SCAN=YES, SCAN ENTIRE BUFFER
THEN=B-GO BRANCH TO ’GO’ IF FOUND

00002 WAIT
00003 BRANCH LABEL=STAY TRY AGAIN ON NEXT MESSAGE
00004 GO WTO (NOW LOGGED ON TO ITPECHO)

********** MAIN MESSAGE LOOP **********

00005 LOOP TEXT (THIS IS A SIMPLE MESSAGE),RESP=(SIMPLE MESSAGE)
00006 1 IF LOC=B+0, START LOOKING AT TERMINAL BUFFER

TEXT=RESP, EXPECTED RESPONSE ABOVE
SCAN=YES, SCAN ENTIRE BUFFER
THEN=CONT THEN CONTINUE MESSAGE GENERATION

00007 ENTER
00008 WAIT

**** MESSAGE OF LENGTH 50

00009 TEXT (THIS IS A 50 CHARACTER MESSAGE),
LENG=50,
RESP=(50 CHARACTER)

00010 2 IF LOC=B+0, START LOOKING AT TERMINAL BUFFER
TEXT=RESP, EXPECTED RESPONSE ABOVE
SCAN=YES, SCAN ENTIRE BUFFER
THEN=CONT THEN CONTINUE MESSAGE GENERATION

00011 ENTER
00012 WAIT

**** MESSAGE OF LENGTH 200

00013 TEXT (THIS IS A 200 CHARACTER MESSAGE),
LENG=200,
RESP=(200 CHARACTER)

00014 3 IF LOC=B+0, START LOOKING AT TERMINAL BUFFER
TEXT=RESP, EXPECTED RESPONSE ABOVE
SCAN=YES, SCAN ENTIRE BUFFER
THEN=CONT THEN CONTINUE MESSAGE GENERATION

00015 ENTER
00016 WAIT

284 Creating Workload Simulator Scripts

**** TRY PF 5 FEATURE OF ITPECHO: REQUEST 10 BYTE STRING

00017 TEXT (10),
RESP=(ABCDEFGHIJ)

00018 4 IF LOC=B+0, START LOOKING AT TERMINAL BUFFER
TEXT=RESP, EXPECTED RESPONSE ABOVE
SCAN=YES, SCAN ENTIRE BUFFER
THEN=CONT THEN CONTINUE MESSAGE GENERATION

00019 PF5 PRESS PF 5
00020 WAIT

**** REQUEST 20 BYTE MESSAGE REPEATED 2 TIMES

00021 TEXT (20,2),
RESP=(ABCDEFGHIJKLMNOPQRST)

00022 5 IF LOC=B+0, START LOOKING AT TERMINAL BUFFER
TEXT=RESP, EXPECTED RESPONSE ABOVE
SCAN=YES, SCAN ENTIRE BUFFER
THEN=CONT THEN CONTINUE MESSAGE GENERATION

00023 PF5 PRESS PF 5
00024 WAIT

**** REQUEST 30 BYTE MESSAGE, REPEAT 10 TIMES, INCREMENT BY 5

00025 TEXT (30,10,5),
RESP=(ABCDEFGHIJKLMNOPQRST)

00026 6 IF LOC=B+0, START LOOKING AT TERMINAL BUFFER
TEXT=RESP, EXPECTED RESPONSE ABOVE
SCAN=YES, SCAN ENTIRE BUFFER
THEN=CONT THEN CONTINUE MESSAGE GENERATION

00027 PF5 PRESS PF 5
00028 WAIT

**** SEND CLEAR TO RESTORE ORIGINAL SCREEN FORMAT

00029 TEXT (), NO TEXT, BUT...
RESP=(WELCOME) RESET THE RESP OPERAND EXPECTED

00030 7 IF LOC=B+0, START LOOKING AT TERMINAL BUFFER
TEXT=RESP, EXPECTED RESPONSE ABOVE
SCAN=YES, SCAN ENTIRE BUFFER
THEN=CONT THEN CONTINUE MESSAGE GENERATION

00031 CLEAR PRESS CLEAR KEY
00032 WAIT

********* LOOP HAS SUCCESSFULLY EXECUTED, REPEAT UNTIL ZEND *****

00033 WTO (LOOP SUCCESSFULLY EXECUTED $DSEQ,5$ TIMES)
00034 BRANCH LABEL=LOOP LOOP AGAIN
00035 ENDTXT

STL procedure
The example below is an STL procedure which, when translated, performs the
same functions as the preceding message generation deck, INSTMTXT. For more
information about STL and the STL Translator see WSim Script Guide and Reference.
This STL procedure is located on the installation tape in the sample data set as
member STLINST on MVS or file name STLINST STLIN on VM.
@network
install1 ntwrk head=’Sample Network 1’,

**

Chapter 23. Sample installation networks 285

* Sample Installation Test Network 1: *
* VTAM API Simulation with ITPECHO *
**

uti=500,
msgtrace=yes,
stltrace=yes,
bufsize=2048,
logdsply=both,
thktime=unlock,
init=sec,
options=(debug,conrate)

itpecho path instmtxt
**
* One VTAM application, one 3270 LU2 session *
* Default screen size is 24 x 80 *
* --> Adjust VTAMAPPL name to match VTAM <-- *
* --> adjust LU DLOGMOD to select logmode <-- *
**

tpnsappl vtamappl
tpnslu lu lutype=lu2,

resource=itpecho,
dlogmod=d4a32782 (d6327802 possible, too)

@endnetwork

@program=installx
/***/
/* */
/* Sample STL program to exercise ITPECHO. May be used by sample */
/* networks ’INSTALL1’ and ’INSTALL2’. */
/* */
/***/
INSTMTXT: msgtxt

/*---*/
/* Wait until the WELCOME TO ITPECHO message appears on the screen */
/* The loop is required here since an incoming SNA BIND RU will */
/* satisfy the wait condition before the message appears. */
/*---*/
do while index(screen,’WELCOME TO ITPECHO’) = 0

wait until onin index(screen,’WELCOME TO ITPECHO’) > 0
end

say ’Now logged on to ITPECHO.’

loop_count = 0 /* Initialize loop counter to 0*/
do forever /* Main message loop */

loop_count = loop_count + 1 /* Increment the loop count */

/*--*/
/* Send a simple message and wait until the message SIMPLE */
/* MESSAGE appears before continuing. */
/*--*/
type ’THIS IS A SIMPLE MESSAGE’
transmit and wait until onin index(screen,’SIMPLE MESSAGE’) > 0

/*--*/
/* Send a message of length 50 and wait until the message 50 */
/* CHARACTER appears before continuing. */
/*--*/
type ’THIS IS A 50 CHARACTER MESSAGE ’||repeat(’ ’,19)
transmit and wait until onin index(screen,’50 CHARACTER’) > 0

286 Creating Workload Simulator Scripts

/*--*/
/* Send a message of length 200 and wait until the message 200 */
/* CHARACTER appears before continuing. */
/*--*/
type ’THIS IS A 200 CHARACTER MESSAGE ’||repeat(’ ’,169)
transmit and wait until onin index(screen,’200 CHARACTER’) > 0

/*--*/
/* Try the PF5 feature of ITPECHO: Request a 10 character */
/* message and wait until the message ABCDEFGHIJ appears before */
/* continuing. */
/*--*/
type ’10’
transmit using PF5 and wait until onin index(screen,’ABCDEFGHIJ’) > 0

/*--*/
/* Request a 20 character message repeated 2 times and wait */
/* until the message ABCDEFGHIJKLMNOPQRST appears before */
/* continuing. */
/*--*/
type ’20,2’
transmit using PF5 and ,

wait until onin index(screen,’ABCDEFGHIJKLMNOPQRST’) > 0

/*--*/
/* Request a 30 character message repeated 10 times and */
/* incremented by 5 each time and wait until the message */
/* ABCDEFGHIJKLMNOPQRST appears before continuing. */
/*--*/
type ’30,10,5’
transmit using PF5 and ,

wait until onin index(screen,’ABCDEFGHIJKLMNOPQRST’) > 0

/*--*/
/* Send a CLEAR to restore the original screen and wait until */
/* WELCOME reappears on the screen before continuing. */
/*--*/
transmit using clear and wait until onin index(screen,’WELCOME’) > 0

say ’Loop successfully executed ’char(loop_count)’ times.’
end /* Main message loop */
endtxt /* End of program */

See “INSTALL1 loglist” on page 375 for sample loglist output.

Chapter 23. Sample installation networks 287

288 Creating Workload Simulator Scripts

Chapter 24. Message scripting examples

The following sections provide examples which you might find useful in
understanding network definition and the message generation and logic testing
processes. Discussions of the examples point out device and application
dependencies. You can use the examples as prototypes for coding the final network
and message generation decks, consider the specific configuration and application
requirements of your system.

Note: STL procedures are provided for the following message generation deck
examples. The message generation deck examples are intended to represent what
you would code had you written them using WSim message generation deck
statements. The STL procedures are what you would code if you were to write the
functionally equivalent deck as an STL procedure. Note that although the two
decks would be functionally equivalent, they might not necessarily contain the
same statements. For more information about STL, see WSim Script Guide and
Reference.

WSim as an application
In the following network, WSim will simulate a primary LU acting as an
application program. Secondary LUs (simulated by WSim or real terminal users)
can log on to this application.

This is a simple application. It is essentially an “echo” program. It receives data
and transmits it to the terminal that issued the request. This application should not
be confused with the sample VTAM application program supplied with WSim,
ITPECHO. That is a separate application program that can be run independently of
WSim. The following script is a WSim script which is simulating an application.
You can note, however, various similarities between the two, as this script was
patterned after ITPECHO and has many of the same functions. This script is an
example of how WSim might be used to prototype applications before their
development.

Additional features of this simulated application can be achieved by a PF key, data
stream content, or a combination of a PF key and data stream content. Specifically,
the sequences with special features are Enter, PF5, PF9, Clear, and Logoff. Since the
functions of this script are patterned after ITPECHO, see the chapter about
ITPECHO in WSim Utilities Guide for a detailed description.

The network is a VTAMAPPL configuration, which requires no additional
hardware. The only change that you need to make to your system is the addition
of a VTAM APPL definition in your system VTAMLST similar to the following
example:
WSIMECHO APPL PARSESS=YES

Coding PARSESS=YES is not required, but allows parallel sessions if wanted.

Network definition
The following example shows the network definition for the resources that drive
the application. Note that the LU has ten primary half-sessions defined. This

© Copyright IBM Corp. 1989, 2015 289

determines that ten secondary logical units can log on to this application. This
script (network definition and message generation decks) is located in the sample
data set as member ECHO.
ECHO NTWRK UTI=0,BUFSIZE=32000,CHAINING=AUTO,

STLTRACE=YES,MSGTRACE=YES,MLOG=YES

PLU PATH PLUECHO
VA1 VTAMAPPL APPLID=WSIMECHO
PLU LU LUTYPE=LU0,PATH=(PLU),MAXSESS=(10,0),INIT=SEC

Message generation deck
Following are the message generation decks needed for this network.

PLUECHO MSGTXT

* BUILD THE REPEAT STRING FOR ALL SESSIONS INTO NETWORK SAVE AREA 1. *

00001 IF LOC=NSW1,WHEN=IMMED,THEN=B-START BRANCH ALREADY SETUP
00002 SETSW NSW1=ON SET SW FOR NEXT TIME
00003 DATASAVE AREA=N1,TEXT=(ABCDEFGHIJKLMNOPQRSTUVWXYZ)
00004 BUILDN1 DATASAVE AREA=N1,TEXT=($RECALL,N1$$RECALL,N1$)
00005 SET DC1=LENG(N1)
00006 IF LOC=DC1,TEXT=32000,COND=LT,WHEN=IMMED,THEN=B-BUILDN1

* FORMAT THE SLU 3270 SCREEN. *

00007 START DATASAVE AREA=1,TEXT=() CLEAR MSG RECV AREA
00008 CALL NAME=FIRSTMSG FORMAT 3270 SCREEN

* ACTIVATE THE IFS TO SAVE THE RU WHEN DATA IS RECEIVED AND RESET THE *
* WAIT INDICATOR. *

00009 0 IF LOC=RU+0,TEXT=(’00’),COND=GE,THEN=ESAVERU,STATUS=HOLD
00010 1 IF LOC=RU+0,TEXT=(’00’),COND=GE,THEN=CONT,STATUS=HOLD

* TOP OF PLU ECHO LOOP *

00011 ECHOLOOP DATASAVE AREA=3,TEXT=($RECALL,1$) SAVE LAST MSG FOR PF9
00012 DATASAVE AREA=1,TEXT=() CLEAR MSG AREA
00013 WAIT

* PROCESS BASED ON AID BYTE RECEIVED AND SAVED IN DEVICE SAVE AREA 1. *

00014 IF LOC=1+0,TEXT=(’F9’),WHEN=IMMED,THEN=B-PF9 PF9
00015 IF LOC=1+0,TEXT=(’C9’),WHEN=IMMED,THEN=B-PF9 PF21
00016 BRANCH LABEL=NOTPF9
00017 PF9 DATASAVE AREA=1,TEXT=($RECALL,3$) RECALL LAST MESSAGE

NOTPF9 LABEL
00018 IF LOC=1+0,TEXT=(’6D’),WHEN=IMMED,THEN=B-CLEAR CLEAR
00019 IF LOC=1+0,TEXT=(’F5’),WHEN=IMMED,THEN=B-PF5 PF5
00020 IF LOC=1+0,TEXT=(’C5’),WHEN=IMMED,THEN=B-PF5 PF17

ENTER LABEL DEFAULT ACTION
00021 IF LOC=1+6,TEXT=(LOGOFF),WHEN=IMMED,THEN=B-LOGOFF
00022 IF LOC=1+6,TEXT=(LOGOFF),WHEN=IMMED,THEN=B-LOGOFF
00023 TEXT (’F1’), WRITE COMMAND

(’C3’), WCC
(’11D160’), SBA (15,01)
(’13’), IC
(’114040’), SBA (01,01)
(’3C4E7F00’), RA (12,80) ’00’X

290 Creating Workload Simulator Scripts

(’114040’), SBA (01,01)
(’124040’), EUA (01,01)
($RECALL,1+6$) DATA RECEIVED

00024 BRANCH LABEL=ECHOLOOP
00025 LOGOFF CMND COMMAND=UNBIND UNBIND SESSION
00026 DEACT IFS=ALL DEACTIVATE IFS
00027 BRANCH LABEL=START

* REPEAT DATA BASED ON NUMBERS RECEIVED *
* *
* MSG_LENGTH<,REPEAT_COUNT<,INCREMENT>> *
* 0-32000 1-32000 0-32000 *
* DC2 DC3 DC4 *

PF5 LABEL
00028 SET DC1=LENG(1) SAVE LENGTH OF RU
00029 IF LOC=DC1,TEXT=23,COND=GT, IF LENGTH OF RU MORE

WHEN=IMMED,THEN=B-PF5ERROR THAN 23, THEN ERROR
00030 DATASAVE AREA=4,TEXT=($RECALL,1+6$) SAVE DATA FROM RU
00031 SET DC1=LENG(4) LENGTH OF RU DATA
00032 IF LOC=DC1,TEXT=17,COND=EQ, IF LENGTH OF RU DATA

WHEN=IMMED,THEN=B-NOPAD 17, PROCESS AS IS
00033 SET DC2=17,DC2=-DC1 DC2 IS LENGTH OF DATA
00034 DATASAVE AREA=4,TEXT=($RECALL,4$$DUP, ,DC2$) PAD WITH BLANKS

NOPAD LABEL
00035 SET DC1=0,DC2=0,DC3=1,DC4=0 DEFAULT VALUES
00036 CALL LABEL=GETNUM GET MSG_LENGTH
00037 SET DC2=DC7 MSG_LENGTH
00038 IF LOC=SW7,WHEN=IMMED,THEN=B-PF5ERROR VALUE IN ERROR
00039 IF LOC=DC2,TEXT=32000,COND=GT, IF MSG_LENGTH IS TOO

WHEN=IMMED,THEN=B-PF5ERROR LARGE, THEN ERROR
00040 IF LOC=4+DC1,TEXT=(,),WHEN=IMMED, CHECK FOR SECOND VALUE

ELSE=B-DOPF5 (REPEAT_COUNT)
00041 SET DC1=+1 LOOK PAST COMMA
00042 CALL LABEL=GETNUM GET REPEAT_COUNT
00043 SET DC3=DC7 REPEAT_COUNT
00044 IF LOC=SW7,WHEN=IMMED,THEN=B-PF5ERROR VALUE IN ERROR
00045 IF LOC=DC3,TEXT=32000,COND=GT, IF REPEAT_COUNT IS

WHEN=IMMED,THEN=B-PF5ERROR TOO LARGE, THEN ERROR
00046 IF LOC=DC3,TEXT=0,WHEN=IMMED, IF REPEAT_COUNT IS

THEN=B-PF5ERROR ZERO, ERROR
00047 IF LOC=4+DC1,TEXT=(,),WHEN=IMMED, CHECK FOR THIRD VALUE

ELSE=B-DOPF5 (INCREMENT)
00048 SET DC1=+1 LOOK PAST COMMA
00049 CALL LABEL=GETNUM GET INCREMENT VALUE
00050 SET DC4=DC7 INCREMENT
00051 IF LOC=SW7,WHEN=IMMED,THEN=B-PF5ERROR VALUE IN ERROR
00052 IF LOC=DC4,TEXT=32000,COND=GT, IF INCREMENT IS TOO

WHEN=IMMED,THEN=B-PF5ERROR LARGE, THEN ERROR
00053 DOPF5 TEXT (’F1C311D160131140403C4E7F00114040124040’),

($RECALL,N1,DC2$) GENERATE MESSAGE
00054 SET DC3=-1,DC2=+DC4 UPDATE COUNTERS
00055 IF LOC=DC3,TEXT=0,WHEN=IMMED, CHECK IF ALL REPETI-

THEN=B-ECHOLOOP TIONS COMPLETE
00056 RH CDI=OFF
00057 BRANCH LABEL=DOPF5
00058 PF5ERROR TEXT (’F1C311D160131140403C4E7F00114040124040’),

(INVALID LENGTH REQUEST) GENERATE ERROR MSG
00059 BRANCH LABEL=ECHOLOOP

* GETNUM AND NUMLOOP PARSES THROUGH THE DATA RECEIVED WITH THE PF5 *
* AID BYTE CHECKING FOR A VALID STRING. *

00060 GETNUM SET DC5=0,DC6=0,DC7=0
00061 SETSW SW7=OFF

Chapter 24. Message scripting examples 291

NUMLOOP LABEL
00062 IF LOC=4+DC1,TEXT=(,),WHEN=IMMED,THEN=RETURN
00063 IF LOC=4+DC1,TEXT=(),WHEN=IMMED,THEN=RETURN
00064 IF LOC=4+DC1,TEXT=(0),COND=LT,WHEN=IMMED,THEN=B-NUMERR
00065 IF LOC=4+DC1,TEXT=(9),COND=GT,WHEN=IMMED,THEN=B-NUMERR
00066 SET DC7=*10,DC6=(E,4+DC1,1),DC7=+DC6,DC1=+1,DC5=+1
00067 IF LOC=DC5,TEXT=5,WHEN=IMMED,THEN=RETURN
00068 BRANCH LABEL=NUMLOOP
00069 NUMERR SETSW SW7=ON ERROR IN VALUE
00070 RETURN

00071 CLEAR CALL NAME=FIRSTMSG
00072 BRANCH LABEL=ECHOLOOP
00073 ENDTXT

FIRSTMSG MSGTXT
00001 TEXT (’F5’), ERASE/WRITE COMMAND

(’C7’), WCC
(’114E7F’), SBA (12,80)
(’1DF8’), SF PROTECTED H.I.
(WELCOME TO ITPECHO.),
(’1D60’), SF PROTECTED
(ENTER=ECHO CLEAR=RESTORE),
(5=STRING REPT 9=REPEAT),
(’115050’), SBA (14,01)
(ENTER DATA TO ECHO BELOW:),
(’11D15F’), SBA (14,80)
(’1D40’), SF UNPROTECTED
(’13’), IC
(’115D7F’), SBA (24,80)
(’1DF0’) SF PROTECTED

00002 RETURN
00003 ENDTXT

SAVERU MSGTXT
00001 DATASAVE AREA=2,LOC=*,LENG=32000 SAVE DATA RECEIVED
00002 DATASAVE AREA=1,TEXT=($RECALL,1$$RECALL,2$) APPEND IT
00003 DATASAVE AREA=2,TEXT=() FREE WORK SAVE AREA
00004 RETURN
00005 ENDTXT

STL procedure
The following example is an STL procedure which, when translated, can be used
instead of the preceding message generation deck for the application. This STL
procedure is in the sample data set as member STLECHO.
@program=echoit
string shared repeat_string /* This is the repeat string */
bit shared not_first_pass /* Set if logged on "again" */
constant alphabet ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’ /* For repeat string */
string unshared work_area /* Work area used by SAVERU */
bit unshared error? /* Set if bad number given */
integer unshared repeat_count /* The numbers provided, by */
integer unshared msg_length /* the user, if the repeat */
integer unshared increment /* function is requested */

pluecho: msgtxt

/***/
/* Build the repeat string for all sessions, if 1st logon */
/***/

if not_first_pass = off then do /* If 1st logon, then */
not_first_pass = on /* Indicate already setup */
repeat_string = alphabet /* Initialize repeat string */

292 Creating Workload Simulator Scripts

do while length(repeat_string) < 32000 /* Build 32000 char string */
repeat_string = repeat_string||repeat_string /* Keep building */

end /* Build 32000 char string */
end /* If 1st logon, then */

do forever /* Repeat forever */
message_area = ’’ /* Clear this to get started */
call firstmsg /* Format the 3270 SLU screen*/

/* When data is received, */
onin substr(ru,1,1) >= ’00’x then do /* save the RU */

work_area = RU /* Save the RU for later use */
message_area = message_area||work_area /* Append to message */
work_area = ’’ /* Clear work area for later */

end
logoff = off /* Indicate LOGOFF not hit */
do while logoff = off /* Do till LOGOFF found */

hold_last_msg = message_area /* Hold this for PF9 check */
message_area = ’’ /* Clear for next message */
wait until onin substr(ru,1,1) >= ’00’x /* Wait till data is */

/* received */

/***/
/* Process based on the AID byte just received */
/***/

if substr(message_area,1,1) = ’F9’x | ,
substr(message_area,1,1) = ’C9’x then /* PF9 or PF21 */
message_area = hold_last_msg /* Restore last message */

select
when substr(message_area,1,1) = ’6D’x then /* Clear */

call firstmsg /* Refresh the screen */

/***/
/* Repeat data if PF5 or 17 pressed based on the following: */
/* */
/* MSG_LENGTH<,REPEAT_COUNT<,INCREMENT>> */
/* 0-32000 1-32000 0-32000 */
/* */
/***/

when substr(message_area,1,1) = ’F5’x | ,
substr(message_area,1,1) = ’C5’x then do /* PF5 or PF17*/

call getnums /* Get each data field */
if error? then do /* Bad number specified */

type ’F1C311D160131140403C4E7F00114040124040’x|| ,
’INVALID LENGTH REQUEST’ /* Give error message */
iterate /* Redisplay the screen */

end /* Bad number specified */
else do while repeat_count > 0 /* Input is Okay! */

/* Display repeat_count times*/
type ’F1C311D160131140403C4E7F00114040124040’x|| ,

substr(repeat_string,1,msg_length) /* Set msg */
transmit /* Send the message */

repeat_count = repeat_count - 1 /* One less time to go*/
msg_length = msg_length + increment /* Increment it */
setrh off(cdi) /* Turn CDI off in the RH */

end /* Input is Okay! */
end /* PF5 or PF17 */
when substr(message_area,7,6) = ’LOGOFF’ | ,

substr(message_area,7,6) = ’logoff’ then do /* LOGOFF */
snacmnd(unbind) /* Send an UNBIND */
deact all io ons /* End all ONIN tests */
logoff = on /* Finished with ECHO screen */

end /* LOGOFF */
otherwise /* Handle ENTER or PF9/21 */

type ’F1’x|| , /* WRITE command */
’C3’x|| , /* WCC */
’11D160’x|| , /* SBA (15,01) */

Chapter 24. Message scripting examples 293

’13’x|| , /* IC */
’114040’x|| , /* SBA (01,01) */
’3C4E7F00’x|| , /* RA (12,80) ’00’X */
’114040’x|| , /* SBA (01,01) */
’124040’x|| , /* EUA (01,01) */
substr(message_area,7) /* The ECHOd data */

end /* select */
end /* Do till LOGOFF found */

end /* Repeat forever */
endtxt /* End of PLUDECK */

firstmsg: msgtxt /* Format the 3270 SLU screen*/
type ’F5’x|| , /* ERASE/WRITE command */

’C7’x|| , /* WCC */
’114E7F’x|| , /* SBA (12,80) */
’1DF8’x|| , /* SF Protected H.I. */
’WELCOME TO ITPECHO.’|| ,
’1D60’x|| , /* SF Protected */
’ ENTER=ECHO CLEAR=RESTORE 5=STRING REPT 9=REPEAT’|| ,
’115050’x|| , /* SBA (14,01) */
’ENTER DATA TO ECHO BELOW:’|| ,
’11D15F’x|| , /* SBA (14,80) */
’1D40’x|| , /* SF UnProtected */
’13’x|| , /* IC */
’115D7F’x|| , /* SBA (24,80) */
’1DF0’x /* SF Protected */

return
endtxt /* End of FIRSTMSG */

getnums: msgtxt /* Parse the user input */

user_input = substr(message_area,7)||’,’ /* Get the user input, */
/* Append , for processing of*/
/* last number */

the_length = 0 /* Initialize each of these */
repeat_count = 1 /* fields to their default */
increment = 0 /* values */
error? = off /* Used to indicate an error */
pass = 1 /* Indicates field processing*/
num_chars = 0 /* Length of number */
number = 0 /* The number to be converted*/
do i=1 to length(user_input) /* Do all input */

character = substr(user_input,i,1) /* Strip off 1 character */
select /* Validate the character */

when character >= ’0’ & ,
character <= ’9’ then do /* If a number is specified */

if num_chars = 0 then /* If 1st char of number */
number = e2d(character) /* Save it */

else /* Not 1st char of number */
number = number*10+e2d(character) /* Build the number */

num_chars = num_chars + 1 /* Bump number of chars found*/
end /* If a number is specified */

when character = ’,’ then /* If a comma is found */
if number > 32000 | , /* If number is too big or */

num_chars > 5 | , /* has too many characters or*/
(num_chars = 0 & , /* is null, .ie no characters*/
i = length(user_input)) then do /* specified, then */
error? = on /* Bad number specified */
return /* Return to caller */

end /* If number is too big or ... */
else do /* Number is okay so far */

select /* See which number this is */
when pass = 1 then /* If 1st number, then */

msg_length = number /* Set ’msg_length’ */
when pass = 2 then /* If 2nd number, then */

if number = 0 then /* If it is 0, then */
error? = on /* It is an error */

294 Creating Workload Simulator Scripts

else /* If 2nd number is okay */
repeat_count = number /* Set ’repeat_count’ */

when pass = 3 then /* If 3rd number, then */
increment = number /* Set ’increment’ */

otherwise /* If none of above, then */
error? = on /* It is an error */

end /* See which number this is */
if error? then /* If an error above */

return /* Return to the caller */
number = 0 /* Reset the number */
pass = pass + 1 /* Increment the pass count */
num_chars = 0 /* Reset the num chars also */

end /* Number is okay so far */

when character = ’ ’ then nop /* Blanks are okay */
otherwise do /* A bad character is found */

error? = on /* Indicate an error */
return /* Return to the caller */

end /* A bad character is found */
end /* Validate the character */

end /* Do all input; the +1 is to ... */
return
endtxt /* GETNUMS */

A portion of the Loglist Utility output that can be run with this sample can be
found in “WSIM application loglist” on page 380.

TCP/IP examples
The following examples present sample networks and WSim scripts for various
TCP/IP examples.

The logical configuration for a TCP/IP network is shown in Figure 32.

TCP/IP Network

Simulated by WSim

DEV DEV DEV DEV

SERVADDR
PORT

Figure 32. Sample TCP/IP network (logical configuration)

Chapter 24. Message scripting examples 295

The physical configuration for a TCP/IP network is shown in Figure 33.

The WSim host processor does not require a specific hardware interface into the
TCP/IP network. Any available interface (3745, 3172, and so on) is acceptable.

Telnet 3270 example
In the following network, WSim simulates four 3270 terminals connecting to a host
via Telnet 3270 sessions. WSim manages the connections to the host while the user
script interacts with the host application. Connection to the host normally causes
the simulated terminal to receive a host application logon screen. The message
generation deck receives control after connection to the host and waits for the
logon screen. Upon receiving the logon screen, the message deck specifies the user
ID and logon password of an account on the host. The message deck then waits
for a ready prompt and logs off.

Network definition statements
*---
TN3270 NTWRK HEAD=’TCPIP 3270 TEST NETWORK’,

CONRATE=YES,
OPTIONS=(DEBUG,MONCMND),
ITIME=1,
MSGTRACE=YES,
LOGDSPLY=BOTH,
BUFSIZE=2048,
THKTIME=UNLOCK,
INIT=PRI,
RSTATS=YES,
UTI=100,
SEQ=0,
SERVADDR=9.67.6.1

*---
SOMEHOST PATH SOMEHOST
*---
TCONN1 TCPIP
DEV11 DEV MAXCALL=5,THKTIME=IMMED
DEV12 DEV DELAY=F(10)
DEV13 DEV THKTIME=UNLOCK
DEV14 DEV

TCP/IP Network

WSim

TCP/IP

Appl.

TCP/IP

SYSTEM UNDER TEST

Figure 33. Sample TCP/IP network (physical configuration)

296 Creating Workload Simulator Scripts

Message generation deck
*---
SOMEHOST MSGTXT

CALL NAME=WAITSCRN
WTO ($DEVID$ ESTABLISHED TCPIP SESSION, LOGGING ON)
SET NC1=NSEQ
SET NSEQ=+1
TEXT ($UTBL,IDS,NC1$),MORE=YES
TAB
TEXT ($UTBL,PWS,NC1$)
ENTER
CALL NAME=WAITREDY
WTO (GOT READY PROMPT)
TEXT (LOGOFF)
ENTER
CALL NAME=WAITLOGF
WTO (GOT LOGOFF MESSAGE)
OPCMND (ZEND)
ENDTXT

*---
WAITSCRN MSGTXT
0 IF WHEN=IN,LOC=B+0,TEXT=(VM/ESA ONLINE),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAITREDY MSGTXT
0 IF LOC=B+0,TEXT=(Ready),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAITLOGF MSGTXT
0 IF LOC=B+0,TEXT=(Logoff),SCAN=YES,THEN=CONT

WAIT
CLEAR
ENDTXT

*---
IDS MSGUTBL (USER1),(USER2),(USER3),(USER4)
PWS MSGUTBL (PASSWORD),(PASSWORD),(PASSWORD),(PASSWORD)

STL procedures
allocate nextnum ’NSEQ’
integer shared nextid

somehost: msgtxt
wait until onin index(screen, ’VM/ESA ONLINE’) > 0
say devid() ’ESTABLISHED TCPIP SESSION, LOGGING ON’
nextid = nextnum
nextnum = nextnum + 1
type utbl(ids,nextid)
tab
type utbl(pws,nextid)
transmit using enter
wait until onin index(screen, ’READY;’) > 0
say ’GOT READY PROMPT’
type ’LOGOFF’
transmit using enter
wait until onin index(screen, ’LOGOFF’) > 0
type ’ZEND’
endtxt

ids: msgutbl
’USER1’
’USER2’
’USER3’

Chapter 24. Message scripting examples 297

’USER4’
endutbl

pws: msgutbl
’PASSWORD’
’PASSWORD’
’PASSWORD’
’PASSWORD’
endutbl

Sample WSim script for a Telnet 3270E simulation
Below is an example of a WSim script simulating two Telnet 3270E printers
receiving data and two Telnet 3270E terminals connecting to an application logon
screen.
**
* Network Configuration: Telnet 3270E simulation *
* *
* Description: This WSim script will simulate two Telnet 3270E *
* terminals connecting to an application logon *
* screen and logging back off. This script also *
* simulates two Telnet 3270E printers receiving *
* data. The SERVADDR operand specifies the IP *
* dotted address of the host to which the *
* terminals and printers will connect. *
* Some values may need to be changed in this data set *
* in order to operate in your environment. They are *
* indicated by the "<== " string. *
* *
**

--
* Network statement operands. *
--
TN3270E NTWRK HEAD=’TEST NETWORK’, * Set the title line

CONRATE=YES, * Print message rates on console
ITIME=1, * Interval report every 1 minute
MSGTRACE=YES, * Log message generation trace
LOGDSPLY=BOTH, * Log formatted 3270 displays
BUFSIZE=2048, * Specify buffer size
THKTIME=UNLOCK, * Wait for keyboard unlock
UTI=100, * User time interval is 1 second
SEQ=0, * Clear network sequence counter
TCPNAME=TCPIP, * <== Default name of the local

* TCPIP virtual machine
SERVADDR=9.67.6.1 * <== Default IP server address

* to which you will connect
--
* Define the message decks included in this path *
--
HOST1 PATH HOST1 * Execute HOST1 msgtxt
HOST2 PATH HOST2 * Execute HOST2 msgtxt
--
* Define the network resources. *
* *
* This is a Telnet connection with 2 simulated Telnet 3270E terminals *
* and 2 simulated Telnet LU3 printers. You may add additional *
* operands on the devices if desired. See the WSim Script Guide *
* and Reference for details on valid operands. *
--
TCONN1 TCPIP TNPORT=23
DEV11 DEV TYPE=TN3270E,RESOURCE=WSIM01,PATH=(HOST1)
DEV12 DEV TYPE=TN3270E,FUNCTS=(0,1,2),PATH=(HOST1)
DEV13 DEV TYPE=TN3270P,RESOURCE=WSIM02,ASSOC=YES,PATH=(HOST2)
DEV14 DEV TYPE=TN3270P,PRTSPD=1000,PATH=(HOST2)

298 Creating Workload Simulator Scripts

MESSAGE GENERATION DECK

HOST1 MSGTXT
--
* The Message Generation deck for the Telnet 3270E terminal. *
* *
* This deck calls WAITSCRN to wait for the application logon screen *
* and issues a Write To Operator message acknowledging that the device *
* has successfully connected. A USERID and password are selected *
* from user tables defined below that attempt to logon to the host. *
* The device then calls WAITREDY to wait for a "ready prompt" from *
* the host indicating a successful logon. After receiving the *
* appropriate ready message, the device logs off. After a device *
* logs off, WSim is closed down. *
--

CALL NAME=WAITSCRN
WTO ($DEVID$ ESTABLISHED TELNET SESSION, LOGGING ON)
SET DC1=NSEQ
SET NSEQ=+1
TEXT ($UTBL,IDS,DC1$),MORE=YES
TAB
TEXT ($UTBL,PWS,DC1$)
ENTER
CALL NAME=WAITREDY
WTO (GOT READY PROMPT)
TEXT (LOGOFF)
ENTER
CALL NAME=WAITLOGF
WTO (GOT LOGOFF MESSAGE)
OPCMND (ZEND)
ENDTXT

--
WAITSCRN MSGTXT
--
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate logon screen. *
--
0 IF WHEN=IN,LOC=B+0,TEXT=(VM/ESA ONLINE),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAITREDY MSGTXT
--
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate ready message *
--
0 IF LOC=B+0,TEXT=(Ready),SCAN=YES,THEN=CONT
1 IF LOC=B+0,TEXT=(Reconnected),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAITLOGF MSGTXT
*---
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate logoff message *
*---
0 IF LOC=B+0,TEXT=(Logoff),SCAN=YES,THEN=CONT
1 IF LOC=B+0,TEXT=(LOGOFF),SCAN=YES,THEN=CONT

WAIT
CLEAR
ENDTXT

*

Chapter 24. Message scripting examples 299

HOST2 MSGTXT
--
* The Message Generation deck for the Telnet 3270E LU3 printer. *
* *
* This deck waits for the NL and EM in the data stream and checks for *
* an unbind sent by the server. *
* *
--

WTO (STARTING PRINTER SESSION,$MSGTXTID$)
0 IF LOC=B+0,SCAN=YES,TEXT=(’1519’),

THEN=E-MSGAA,WHEN=IN
1 IF LOC=D+0,TEXT=(’00’),

COND=GE,THEN=E-INCAL,
DATASAVE=(1,D+0,32000)

2 IF LOC=D+0,SCAN=YES,TEXT=(’0800’),
THEN=E-MSGBB,WHEN=IN

WAIT
MSGAA WTO (PRINTOUT RECEIVED,$MSGTXTID$)

RETURN
MSGBB WTO (UNBIND RECEIVED,$MSGTXTID$)

WTO ($CNTR,DC1$ BYTES RECEIVED)
SET DC1=0
RETURN

INCAL SET DC2=LENG(1),DC1=+DC2
WTO ($CNTR,DC2$ BYTES RECEIVED)
WTO ($CNTR,DC1$ TOTAL BYTES RECEIVED)
RETURN
ENDTXT

*---
* * <== The USERIDs and passwords
* * below must be changed to
* * valid names
*---
IDS MSGUTBL (USER1),(USER2),(USER3),(USER4)
PWS MSGUTBL (PASSWORD),(PASSWORD),(PASSWORD),(PASSWORD)

STL PROCEDURE

@PROGRAM=TN3270E
/*---*
* This deck waits for the application logon screen and displays a *
* message to the operator acknowledging that the device has been *
* successfully connected. A USERID and password are selected from *
* user tables defined below that attempt to logon to the host. The *
* device then calls WAITREDY to wait for a "ready prompt" from the *
* host indicating a successful logon. After receiving the appropriate *
* ready message, the device logs off. Once a device logs off, WSim *
* is closed down. *
---/
allocate nextnum ’NSEQ’
integer nextid
integer totaldata

host1: msgtxt
wait until onin index(screen, ’VM/ESA ONLINE’) > 0
say devid() ’ESTABLISHED TELNET SESSION, LOGGING ON’
nextid = nextnum
nextnum = nextnum + 1
type utbl(ids,nextid)
tab
type utbl(pws,nextid)
transmit and wait until onin index(screen, ’READY;’) > 0
say ’GOT READY PROMPT’
type ’LOGOFF’
transmit and wait until onin index(screen, ’LOGOFF’) > 0

300 Creating Workload Simulator Scripts

opcmnd ’ZEND’
endtxt

/*---*
* The Message deck for the Telnet 3270E LU3 printer. *
* *
* This deck waits for the NL and EM in the data stream and checks for *
* an unbind sent by the server. *
---/
host2: msgtxt
say ’STARTING PRINTER SESSION, ’ msgtxtid()
onin index(buffer,’1519’) > 0 then

say ’PRINTOUT RECEIVED ’ msgtxtid()
onin then do

totaldata=totaldata+length(data)
say char(length(data)) ’ BYTES RECEIVED’
say char(totaldata) ’ TOTAL BYTES RECEIVED’

end
onin index(buffer,’0800’) > 0 then do

say ’UNBIND RECEIVED ’ msgtxtid()
say char(totaldata) ’ BYTES RECEIVED’
total=0

end
wait

endtxt

ids: msgutbl
’USER1’
’USER2’
’USER3’
’USER4’
endutbl

pws: msgutbl
’PASSWORD’
’PASSWORD’
’PASSWORD’
’PASSWORD’
endutbl

Sample Telnet Line Mode Network Virtual Terminal message
generation deck

Below is a sample Telnet Line Mode Network Virtual Terminal message generation
deck:

Telnet Line Mode Network Virtual Terminal Simulation Message Generation Deck
--
* The Message Generation deck for the Telnet Line Mode NVT. *
* *
* This deck calls WAITSCRN to wait for the application logon screen *
* and issues a Write To Operator message acknowledging that the device *
* has successfully connected. A USERID is selected from the id user *
* table defined below to attempt to logon. The device then calls *
* WAITPWD to wait for "Password" and then send the password from the *
* password user table below. After receiving the "$" prompt, the *
* device logs off. *
* *
--
HOST1 MSGTXT

CALL NAME=WAITSCRN
WTO ($DEVID$ ESTABLISHED TELNET SESSION, LOGGING ON)
SET DC1=NSEQ
SET NSEQ=+1
TEXT ($UTBL,IDS,DC1$’0D25’)
ENTER
CALL NAME=WAITPWD

Chapter 24. Message scripting examples 301

WTO (GOT PASSWORD)
TEXT ($UTBL,PWS,DC1$’0D25’)
ENTER
CALL NAME=WAIT$
TEXT (LOGOUT)
WTO (GOT $$ PROMPT)
ENDTXT

--
WAITSCRN MSGTXT
--
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate logon screen. *
--
0 IF WHEN=IN,LOC=B+0,TEXT=(login:),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAITPWD MSGTXT
--
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate password message *
--
0 IF LOC=B+0,TEXT=(Password),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAIT$ MSGTXT
*---
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate prompt message *
*---
0 IF LOC=B+0,TEXT=($$),SCAN=YES,THEN=CONT

WAIT
CLEAR
ENDTXT

*---
* * <== The USERIDs and passwords
* * below must be changed to
* * valid names
*---
IDS MSGUTBL (USER1),(USER2),(USER3)
PWS MSGUTBL (PASSWD1),(PASSWD2),(PASSWD3)

Sample Telnet Line Mode Network Virtual Terminal STL
procedure

Below is a sample Telnet Line Mode Network Virtual Terminal STL procedure:

allocate nextnum ’NSEQ’
integer nextid
constant crlf ’0D25’x
host1: msgtxt
data_received=’’
onout then data_received=’’
onin then data_received=data_received{buffer
wait until onin index(data_received,’login’) > 0
say devid() ’ESTABLISHED TELNET SESSION, LOGGING ON’
nextid =nextnum
nextnum=nextnum+1
if nextnum=utblmax(ids) then
nextnum=0
say devid() ’sending LOGIN’
type utbl(ids,nextid){crlf

302 Creating Workload Simulator Scripts

transmit and wait until onin index(data_received,’Password’) > 0
say devid() ’got Password PROMPT’
type utbl(pws,nextid){crlf
do nextcmd=0 to utblmax(cmds)
transmit and wait until onin index(data_received,’$’) > 0
say devid() ’sending COMMAND’ utbl(cmds,nextcmd)
type utbl(cmds,nextcmd){crlf

end
endtxt

ids: msgutbl
’user1’
’user2’
’user3’
endutbl

pws: msgutbl
’passwd1’
’passwd2’
’passwd3’
endutbl

cmds: msgutbl
’cd /usr/lpp’
’ls’
’logout’
endutbl

File Transfer Protocol (FTP) example
In the following network, WSim simulates a sample network with one File Transfer
Protocol (FTP) device connecting to a host via a TCP/IP FTP session. WSim
manages the connections to the host while the user script transfers files with the
host application.

Network definition statement
* File Transfer Protocol *
**
* Network Configuration: File Transfer Protocol simulation *
* *
* Description: This WSim script will simulate one FTP client user *
* connecting to a server, putting a file to that server, *
* then retrieving the same file. The SERVADDR operand *
* specifies the IP dotted address of the host to which *
* the device will connect. *
* *
* Some values may need to be changed in this data set in *
* order to operate in your environment. They are *
* indicated by the "<== " string. *
* *
**

--
* Network statement operands. *
--
FTP NTWRK HEAD=’Model FTP Network’, * Set the title line

CONRATE=YES, * Print message rates on console
OPTIONS=(DEBUG,MONCMND), * Network Options
ITIME=1, * Interval report every 1 minute
BUFSIZE=32000, * Specify buffer size
THKTIME=UNLOCK, * Wait for keyboard unlock
UTI=100, * User time interval is 1 second
TCPNAME=TCPIP, * <== Default name of the local

* * TCPIP virtual machine
SERVADDR=9.67.43.62 * <== Remote Server

* * to which you will connect

Chapter 24. Message scripting examples 303

--
1 UTBL (Hes the invisible man), * First Record Data

(Catch him if you can) * Second Record Data
--
FTPDECK PATH FTPDECK
--
* Define the file data to be simulated *
--
FILE1 FILE TYPE=E, * File Data is EBCDIC

RECFM=F, * Fixed Record Format
RECLEN=80, * Record Length is 80
DATA=1 * Get data from UTBL 1

--
* Define the network resources. *
* *
* This is a TCP/IP connection with 1 simulated device. You may *
* add additional operands on the device if desired. See the WSim *
* Script Guide and Reference for details on valid operands. *
--
TCONN1 TCPIP PATH=(FTPDECK)
DEV010 DEV TYPE=FTP

Message generation deck
FTPDECK MSGTXT
--
* The Message Generation deck. *
* *
* Generates FTP commands for file transfer. *
* user - identifies the user to the server. *
* pass - supplies a password to the server. *
* ebcdic - set file transfer type to EBCDIC. *
* mode - specifies file transfer mode. *
* sendsite - disables automatic transmission of SITE subcommand. *
* put - transfers the FILE data defined by WSim FILE statement. *
* get - transfers the data from a file on the server. *
* *
--
* Wait for connect
1 IF WHEN=IN,LOC=D+0,COND=GE,

TEXT=(’00’x),THEN=CONT /* Wait for next message */
WAIT

LOOP TEXT (user testuser) /* <== Enter User ID */
TEXT (pass testpass) /* <== Enter Password */
TEXT (ebcdic) /* EBCDIC Translation */
TEXT (mode B) /* Block Mode */
TEXT (sendsite) /* Automatic SITE Off */
TEXT (put FILE1 TEST.FILE1) /* Put File1 */
TEXT (get TEST.FILE1) /* Get File1 back */

4 IF WHEN=IN,
LOCTEXT=($RECALL,B+0,3$),COND=EQ,TEXT=(250),THEN=E-SUCC

BRANCH LABEL=NOTSU
SUCC WTO (Get successful.)

RETURN
NOTSU LABEL
5 IF WHEN=IN,

LOCTEXT=($RECALL,B+0,3$),COND=EQ,TEXT=(426),THEN=E-FAIL
BRANCH LABEL=QUIT

FAIL WTO (Get failed.)
RETURN

QUIT TEXT (quit)
* Following quiesce will keep automatic reconnect from
* occurring. Release the DEV to recycle through the
* script. Remove the QUIESCE to
* automatically recycle after 30 seconds.

QUIESCE
BRANCH LABEL=LOOP
ENDTXT

304 Creating Workload Simulator Scripts

STL procedure
ftpdeck: msgtxt
/*---*
* The Message Generation deck. *
* *
* Generates FTP commands for file transfer. *
* user - identifies the user to the server. *
* pass - supplies a password to the server. *
* ebcdic - set file transfer type to EBCDIC. *
* mode - specifies file transfer mode. *
* sendsite - disables automatic transmission of SITE subcommand. *
* put - transfers the FILE data defined by WSim FILE statement. *
* get - transfers the data from a file on the server. *
* *
---/
/* Wait for connect */

wait until onin
Do forever
type ’user testuser’ /* <== Enter User ID */
transmit
type ’pass testpass’ /* <== Enter Password */
transmit
type ’ebcdic’ /* EBCDIC Transfer Type */
transmit
type ’mode B’ /* Block Mode */
transmit
type ’sendsite’ /* Automatic SITE Off */
transmit
type ’put FILE1 TEST.FILE1’ /* Put File1 */
transmit
s: onin substr(buffer,1,3)=’250’ then /* Check message number */

say ’Get successful.’
f: onin substr(buffer,1,3)=’426’ then /* Check message number */

say ’Get failed.’
type ’get TEST.FILE1’ /* Get File1 back */
transmit
deact s,f
type ’quit’ /* Drop Connection */

/* Following quiesce will keep automatic reconnect from */
/* occurring. Release the DEV to recycle through the */
/* script. Replace the quiesce with a transmit to */
/* automatically recycle after 30 seconds. */

quiesce
end
endtxt

Simple TCP Client example
In the following network, WSim simulates a sample network with one Simple TCP
Client device connecting to a host via a TCP/IP STCP session.

Network definition statement
* Simple TCP Client
**
* Network Configuration: Simple TCP Client simulation *
* *
* Description: This WSim script will simulate one Simple TCP Client *
* connecting to a server, issuing a request to that *
* server, receiving data until the server closes the *
* connection, and then repeating the process. *
* *
* The server to which this Simple TCP Client connects *
* is assumed to have the following characteristics: *
* 1) requests to it must use ASCII code; *
* 2) the end of a request is marked by a sequence of *
* two carriage return/line feed (CR/LF) sequences; *

Chapter 24. Message scripting examples 305

* 3) the server closes the connection when all response *
* data has been sent. *
* *
* Some values may need to be changed in this data set in *
* order to operate in your environment. They are *
* indicated by the "<== " string. *
* *
**

--
* Network statement operands. *
--
STCP NTWRK HEAD=’Model STCP Network’, * Set the title line

CONRATE=YES, * Print message rates on console
OPTIONS=(MONCMND), * Network Options
ITIME=1, * Interval report every 1 minute
BUFSIZE=32000, * Specify buffer size
THKTIME=UNLOCK, * Wait for keyboard unlock
UTI=100, * User time interval is 1 second
TCPNAME=TCPIP * <== Default name of the local

* * TCPIP virtual machine
--
STCPDECK PATH STCPDECK
--
* Define the network resources. *
* *
* This is a TCP/IP connection with 1 simulated device. You may *
* add additional operands on the device if desired. See the WSim *
* Script Guide and Reference for details on valid operands. *
--
TCONN1 TCPIP
DEV010 DEV TYPE=STCP, * Simple TCP Client

PORT=5555, * Server Port for connection
SERVADDR=9.67.43.62, * Server IP Address for connection
PATH=(STCPDECK) * Path Sequence for this DEV

Message generation deck
STCPDECK MSGTXT

* The Message Generation deck. *
* *
* Generates requests for the server hypothesized in the network *
* description above, waits for the connection to be *
* closed, and then generates another request *

* Initialize table for translation to ASCII

DATASAVE AREA=1,
TEXT=(’000102031A091A7F1A1A1A0B0C0D0E0F’)+ * 00-0F

(’101112131A1A081A18191A1A1C1D1E1F’)+ * 10-1F
(’1A1A1C1A1A0A171B1A1A1A1A1A050607’)+ * 20-2F
(’1A1A161A1A1E1A041A1A1A1A14151A1A’)+ * 30-3F
(’20A6E180EB909FE2AB8B9B2E3C282B7C’)+ * 40-4F
(’26A9AA9CDBA599E3A89E21242A293B5E’)+ * 50-5F
(’2D2FDFDC9ADDDE989DACBA2C255F3E3F’)+ * 60-6F
(’D78894B0B1B2FCD6FB603A2340273D22’)+ * 70-7F
(’F861626364656667686996A4F3AFAEC5’)+ * 80-8F
(’8C6A6B6C6D6E6F7071729787CE93F1FE’)+ * 90-9F
(’C87E737475767778797AEFC0DA5BF2F9’)+ * A0-AF
(’B5B6FDB7B8B9E6BBBCBD8DD9BF5DD8C4’)+ * B0-BF
(’7B414243444546474849CBCABEE8ECED’)+ * C0-CF
(’7D4A4B4C4D4E4F505152A1ADF5F4A38F’)+ * D0-DF
(’5CE7535455565758595AA0858EE9E4D1’)+ * E0-EF
(’30313233343536373839B3F7F0FAA7FF’) * F0-FF

* Set length of input data each time data is received
1 IF WHEN=IN,STATUS=HOLD,SNASCOPE=ALL,

LOC=NC1,COND=GE,TEXT=0,
THEN=E-SAVELENG

306 Creating Workload Simulator Scripts

BRANCH LABEL=TRANLOOP
SAVELENG DATASAVE AREA=2,

TEXT=($RECALL,B+0$)
SET DC2=LENG(2)
RETURN

* Loop sending transaction
TRANLOOP DATASAVE AREA=2,

FUNCTION=TRANSLATE,
TEXT=(Sample Transaction from $ID,8$),
TABLEO=($RECALL,1$)

DATASAVE AREA=3,
FUNCTION=TRANSLATE,
TEXT=(Sample Transaction line 2),
TABLEO=($RECALL,1$)

TEXT ($RECALL,2$’0D0A’$RECALL,3$’0D0A0D0A’)
2 IF WHEN=IN,STATUS=HOLD,SNASCOPE=ALL,

LOC=DC2,TEXT=0,COND=EQ,
THEN=CONT

WAIT
DEACT IFS=(2)
BRANCH LABEL=TRANLOOP
ENDTXT

STL procedure
stcpdeck: msgtxt
/*---*
* The Message Generation deck. *
* *
* Generates requests for the server hypothesized in the network *
* description above, waits for the connection to be *
* closed, and then generates another request *
* *
---/
/* Initialize table for translation to ASCII */

ebc2asc = ’000102031A091A7F1A1A1A0B0C0D0E0F’X||, /* 00-0F */
’101112131A1A081A18191A1A1C1D1E1F’X||, /* 10-1F */
’1A1A1C1A1A0A171B1A1A1A1A1A050607’X||, /* 20-2F */
’1A1A161A1A1E1A041A1A1A1A14151A1A’X||, /* 30-3F */
’20A6E180EB909FE2AB8B9B2E3C282B7C’X||, /* 40-4F */
’26A9AA9CDBA599E3A89E21242A293B5E’X||, /* 50-5F */
’2D2FDFDC9ADDDE989DACBA2C255F3E3F’X||, /* 60-6F */
’D78894B0B1B2FCD6FB603A2340273D22’X||, /* 70-7F */
’F861626364656667686996A4F3AFAEC5’X||, /* 80-8F */
’8C6A6B6C6D6E6F7071729787CE93F1FE’X||, /* 90-9F */
’C87E737475767778797AEFC0DA5BF2F9’X||, /* A0-AF */
’B5B6FDB7B8B9E6BBBCBD8DD9BF5DD8C4’X||, /* B0-BF */
’7B414243444546474849CBCABEE8ECED’X||, /* C0-CF */
’7D4A4B4C4D4E4F505152A1ADF5F4A38F’X||, /* D0-DF */
’5CE7535455565758595AA0858EE9E4D1’X||, /* E0-EF */
’30313233343536373839B3F7F0FAA7FF’X; /* F0-FF */

/* Set length of input data each time data is received */
onin then ilen=length(buffer)

/* Loop sending transaction */
Do forever
type translate(’Sample Transaction from’ id(),ebc2asc)||’0d0a’x||,

translate(’Sample Transaction line 2’,ebc2asc)||’0d0a0d0a’x;
transmit and wait until onin ilen=0 /* Send in the transaction */

/* and wait for connection */
/* to close */

end
endtxt

CPI-C example with single-instance transaction programs
In the following network, WSim simulates a sample network with two LUs and
three single-instance transaction programs (TPs): one client TP and two server TPs.

Chapter 24. Message scripting examples 307

The logical configuration for this network is shown in Figure 34.

Network definition statements
**
* *
* Network Configuration: CPI-C Transaction Program simulation *
* *
* Network Description: *
* *
* This WSim Network simulates a CPI-C client Transaction Program *
* communicating with a CPI-C server Transaction Program. The server *
* TP then communicates with a second CPI-C server Transaction *
* Program. There are two simulated LU’s. The client TP has 1 *
* initial instance, and the server TP’s are started by incoming *
* attach requests. A different level of CPI-C tracing is requested *
* by each of the TP’s. *
* *
* Network Diagram: *
* *
* APPCLU: APPCLU1 APPCLU: APPCLU2 *
* +-----------------+ +-----------------+ *
* | | | | *
* | +---------+ | conversation 1 | +---------+ | *
* | | TP: TPA ===========================> | | *
* | +---------+ | mode=#inter | | | | *
* | | | | TP: TPB | | *
* | +---------+ | conversation 2 | | | | *
* | | TP: TPC <=========================== | | *
* | +---------+ | mode=#batch | +---------+ | *
* | | | | *
* +-----------------+ +-----------------+ *
* *
* Notes: *
* *
* 1. Conversation 1 uses mode name #INTER. The conversation *
* sync-level is "none". *
* *
* 2. Conversation 2 uses mode name #BATCH. The conversation *
* sync-level is "confirm". *
* *
* 3. The VTAM APPLID names used in this network (APPCLU1 and *
* APPCLU2) must be defined to VTAM and must be active prior to *
* running this network. *
* *

VTAM

WSim

APPCLU1 APPCLU2

LU1TPA LU1TPC LU2TPB

Figure 34. Sample CPI-C network with single-instance TPs (logical configuration)

308 Creating Workload Simulator Scripts

* 4. The CNOS operand on the APPCLU1 definition is only required *
* if you want to control the number of sessions. If the operand *
* is not specified, sessions will be managed by WSim as required *
* by the simulation. *
* *
**

CPICSMP1 NTWRK HEAD=’CPI-C NETWORK SAMPLE 1’,
TPSTATS=YES * Keep stats for all TP instances *

--
* Transaction Program paths. *
--
LU1TPA PATH TPADECK * Define the LU1TPA TP path *
LU1TPC PATH TPCDECK * Define the LU1TPC TP path *
LU2TPB PATH TPBDECK * Define the LU1TPB TP path *

--
* Network resources. *
--
APPCLU1 APPCLU APPLID=APPCLU1, * APPC LU; VTAM APPLID is APPCLU1 *

SIDEINFO=((DESTNAME=LU2TPB,MODENAME=#INTER,
TPNAME=TPB,LUNAME=APPCLU2)),

* * Define destination name LU2TPB *
CNOS=((LUNAME=APPCLU2,MODENAME=#INTER,

SESSIONS=4,CWL=2,CWP=2))
* * Specify CNOS values *
LU1TPA TP TPNAME=TPA, * TP name is TPA *

PATH=(LU1TPA), * TP is defined by LU1TPA path *
TPTYPE=CLIENT, * TP type is CLIENT *
INSTANCE=(1,1), * 1 initial TP instance *
CPITRACE=MSG * Log CPI-C trace messages *

LU1TPC TP TPNAME=TPC, * TP name is TPC *
PATH=(LU1TPC), * TP is defined by LU1TPC path *
TPTYPE=SERVER, * TP type is SERVER *
INSTANCE=(0,1), * No initial TP instances *
CPITRACE=VERBEND * Log CPI-C verb completions *

APPCLU2 APPCLU APPLID=APPCLU2, * APPC LU; VTAM APPLID is APPCLU2 *
SIDEINFO=((DESTNAME=LU1TPC,MODENAME=#BATCH,TPNAME=TPC,

LUNAME=APPCLU1))
* * Define destination name LU1TPC *
LU2TPB TP TPNAME=TPB, * TP name is TPC *

PATH=(LU2TPB), * TP is defined by LU2TPB path *
TPTYPE=SERVER, * TP type is SERVER *
INSTANCE=(0,1), * No initial TP instances *
CPITRACE=VERB * Log CPI-C verbs issued & complete *

Message generation decks
TPADECK MSGTXT
**
* Message deck defining the TPA Transaction Program. *
**
*
* Device save area usage:
* 1=conversation ID
* 2=destination name
* 3=send buffer
*
* Device counter usage:
* dc1=return code
* dc2=send length
* dc3=request-to-send received
*

WTO (Transaction Program $TPID$ starting.)
*

Chapter 24. Message scripting examples 309

**
* Initialize and allocate a conversation with TPB. *
*
* Set the symbolic destination name to "LU2TPB".

DATASAVE AREA=2,TEXT=(LU2TPB)
*
* Initialize a conversation with TPB.

CMINIT(1,2,DC1)
*
* Allocate a conversation with TPB; the sync-level defaults
* to "none", and the conversation type defaults to "mapped".

CMALLC(1,DC1)
*
* Setup the send buffer and length.

DATASAVE AREA=3,TEXT=(Data sent from A to B.) * Send buffer
SET DC2=LENG(3) * Send length

*
* Send data to TPB.

CMSEND(1,3,DC2,DC3,DC1)
*
* Deallocate the conversation with TPB.

CMDEAL(1,DC1)
*

WTO (Transaction Program $TPID$ complete.)
*

ENDTXT

TPCDECK MSGTXT
**
* Message deck defining the TPC Transaction Program. *
**
*
* Device save area usage:
* 1=conversation ID
* 2=receive buffer
*
* Device counter usage:
* dc1=return code
* dc2=requested length
* dc3=data received
* dc4=received length
* dc5=status received
* dc6=request-to-send received
*

WTO (Transaction Program $TPID$ starting.)
*
* Accept the conversation with TPB.

CMACCP(1,DC1)
*
* Setup requested length for receive.

SET DC2=100
*
* Receive data from TPB.

CMRCV(1,2,DC2,DC3,DC4,DC5,DC6,DC1)
*
* Confirm the data was received.

CMCFMD(1,DC1)
*

WTO (Transaction program $TPID$ complete.)
WTO (Simulation complete.)

*
ENDTXT

TPBDECK MSGTXT
**
* Message deck defining the TPB Transaction Program. *
**

310 Creating Workload Simulator Scripts

*
* Device save area usage:
* 1=conversation ID
* 2=receive buffer
* 3=destination name
* 4=send buffer
*
* Device counter usage:
* dc1=return code
* dc2=requested length
* dc3=data received
* dc4=received length
* dc5=status received
* dc6=request-to-send received
* dc7=send length
* dc8=sync-level
*

WTO (Transaction Program $TPID$ starting.)
*
* Accept the conversation with TPA.

CMACCP(1,DC1)
*
* Setup requested length for receive.

SET DC2=100
*
* Receive data from TPA.

CMRCV(1,2,DC2,DC3,DC4,DC5,DC6,DC1)
*
**
* Initialize and allocate a conversation with TPC. *
*
* Set the symbolic destination name to "LU1TPC".

DATASAVE AREA=3,TEXT=(LU1TPC)
*
* Initialize a conversation with TPC.

CMINIT(1,3,DC1)
*
* Set the conversation sync-level to "confirm".

SET DC8=1 * Sync-level
CMSSL(1,DC8,DC1)

*
* Allocate a conversation with TPC; the conversation type
* defaults to "mapped".

CMALLC(1,DC1)
*
* Setup the send buffer and length.

DATASAVE AREA=4,TEXT=(Data sent from B to C.) * Send buffer
SET DC7=LENG(4) * Send length

*
* Send data to TPC.

CMSEND(1,4,DC7,DC6,DC1)
*
* Deallocate the conversation with TPC.

CMDEAL(1,DC1)
*

WTO (Transaction Program $TPID$ complete.)
*

ENDTXT

STL procedures
@PROGRAM=CPICSMP1

@include cpicvar
@include cpiccon

TPADECK: MSGTXT

Chapter 24. Message scripting examples 311

/***
* STL deck defining the TPA Transaction Program. *
***/

say ’Transaction Program’ tpid() ’starting.’

/**/
/* Initialize and allocate a conversation with TPB. */

/* Set the symbolic destination name to "LU2TPB". */
sym_dest_name=’LU2TPB’

/* Initialize a conversation with TPB. */
CMINIT(conversation_ID,,

sym_dest_name,,
return_code)

/* Allocate the conversation; the sync-level defaults to "none", */
/* and the conversation type defaults to "mapped". */
CMALLC(conversation_ID,,

return_code)

/* Setup the send buffer and length. */
send_buffer=’Data sent from A to B.’ /* send buffer for mapped conv */
/*send_buffer=’0018’x||’Data sent from A to B.’ buff for basic conv */
send_length=length(send_buffer)

/* Send data to TPB. */
CMSEND(conversation_ID,,

send_buffer,,
send_length,,
request_to_send_received,,
return_code)

/* Deallocate the conversation with TPB. */
CMDEAL(conversation_ID,,

return_code)

say ’Transaction Program’ tpid() ’complete.’

ENDTXT

TPCDECK: MSGTXT
/***
* STL deck defining the TPC Transaction Program. *
***/

say ’Transaction Program’ tpid() ’starting.’

/* Accept the conversation with TPB. */
CMACCP(conversation_ID,,

return_code)

/* Set requested length for receive. */
requested_length=100

/* Receive data from TPB. */
CMRCV(conversation_ID,,

receive_buffer,,
requested_length,,
data_received,,
received_length,,
status_received,,
request_to_send_received,,
return_code)

/* Confirm the data was received. */

312 Creating Workload Simulator Scripts

CMCFMD(conversation_ID,,
return_code)

say ’Transaction Program’ tpid() ’complete.’
say ’Simulation complete.’

ENDTXT

TPBDECK: MSGTXT
/***
* STL deck defining the TPB Transaction Program. *
***/

say ’Transaction Program’ tpid() ’starting.’

/* Accept the conversation with TPA. */
CMACCP(conversation_ID,,

return_code)

/* Set requested length for receive. */
requested_length=100

/* Receive data from TPA. */
CMRCV(conversation_ID,,

receive_buffer,,
requested_length,,
data_received,,
received_length,,
status_received,,
request_to_send_received,,
return_code)

/* Confirm the data was received. */
CMCFMD(conversation_ID,,

return_code)

/**/
/* Initialize and allocate a conversation with TPC. */

/* Set the symbolic destination name to "LU1TPC". */
sym_dest_name=’LU1TPC’

/* Initialize a conversation with TPC. */
CMINIT(conversation_ID,,

sym_dest_name,,
return_code)

/* Set the conversation sync-level to "confirm". */
CMSSL(conversation_ID,,

cm_confirm,,
return_code)

/* Allocate the conversation; the conversation type defaults to */
/* "mapped". */
CMALLC(conversation_ID,,

return_code)

/* Setup the send buffer and length. */
send_buffer=’Data sent from B to C.’
send_length=22

/* Send data to TPC. */
CMSEND(conversation_ID,,

send_buffer,,
send_length,,
request_to_send_received,,
return_code)

Chapter 24. Message scripting examples 313

/* Deallocate the conversation with TPC. */
CMDEAL(conversation_ID,,

return_code)

say ’Transaction Program’ tpid() ’complete.’

ENDTXT

CPI-C example with multiple-instance transaction programs
In the following network, WSim simulates a sample with two LUs and two
transaction programs (TPs): a client TP and a server TP. The client TP has three
instances, which WSim starts .01 seconds apart. Each client TP instance sends an
attach request to the server TP; each attache request arriving at the server TP
activates an instance of the server TP.

The logical configuration for this network is shown in Figure 35.

Network definition statements
**
* *
* Network Configuration: CPI-C Transaction Program simulation *
* *
* Network Description: *
* *
* This WSim Network simulates a CPI-C client Transaction Program *
* communicating with a CPI-C server Transaction Program. The client *
* TP has 3 instances that are started with a .01 second stagger. *
* The server TP is started by incoming attach requests. Statistics *
* are only kept for the first instance of each TP. CPI-C verb *
* tracing is requested. *
* *
* Network Diagram: *
* *
* APPCLU: APPLID1 APPCLU: APPLID2 *
* +--------------------+ +--------------------+ *
* | | | | *
* | +--------------+ | | +--------------+ | *
* | | | | conversation 1 | | | | *
* | | TP: CLIENT-1 =========================> TP: SERVER-1 | | *
* | | | | | | | | *

VTAM

WSim

APPCLUS

TPSERVER-2

APPCLUC

TPCLIENT-1

TPCLIENT-2

TPCLIENT-3

TPSERVER-1

TPSERVER-3

Figure 35. Sample CPI-C network with multiple instance TPs (logical configuration)

314 Creating Workload Simulator Scripts

* | | | | conversation 2 | | | | *
* | | TP: CLIENT-2 =========================> TP: SERVER-2 | | *
* | | | | | | | | *
* | | | | conversation 3 | | | *
* | | TP: CLIENT-3 =========================> TP: SERVER-3 | | *
* | | | | | | | | *
* | +--------------+ | | +--------------+ | *
* | | | | *
* +--------------------+ +--------------------+ *
* *
* Notes: *
* *
* 1. Conversations 1 thru 3 use mode name #INTER. The conversation *
* sync-level is "confirm". *
* *
* 2. Since there are 3 client TP instances and the server is started *
* by attach requests, three server TP instances are required *
* to accept each of the 3 incoming conversations. *
* *
* 3. The VTAM APPLID names used in this network (APPLID1 and *
* APPLID2) must be defined to VTAM and must be active prior to *
* running this network. *
* *
**

CPICSMP2 NTWRK HEAD=’CPI-C NETWORK SAMPLE 2’,
CPITRACE=VERB, * Trace CPI-C verbs in the log *
TPSTATS=NO * Keep stats for 1st TP instance only*

--
* Network-wide Side Information Table. *
--

SIDEINFO
SIDEENT DESTNAME=SERVER,MODENAME=WSIMLU62,

LUNAME=APPLID2,TPNAME=TPSERVER
SIDEEND

--
* Transaction Program paths. *
--
CLIENT PATH CLIENT * Define the CLIENT TP path *
SERVER PATH SERVER * Define the SERVER TP path *

--
* Network resources. *
--
APPCLUC APPCLU APPLID=APPLID1 * Client APPC LU *
TPCLIENT TP PATH=(CLIENT), * TP name is TPCLIENT, path is CLIENT*

TPTYPE=CLIENT, * TP type is client *
INSTANCE=(3,3), * 3 initial & 3 concurrent instances *
TPSTIME=1 * Stagger start-up by .01 seconds *

APPCLUS APPCLU APPLID=APPLID2 * Server APPC LU *
TPSERVER TP PATH=(SERVER), * TP name is TPSERVER, path is SERVER*

TPTYPE=SERVER, * TP type is server *
INSTANCE=(0,1) * No initial TP instances *

Message generation decks
CLIENT: MSGTXT
**
* Message deck defining the TPCLIENT Transaction Program. *
**
*
* Device save area usage:
* 1=conversation ID
* 2=destination name
* 3=send buffer

Chapter 24. Message scripting examples 315

*
* Device counter usage:
* dc1=return code
* dc2=sync-level
* dc3=send length
* dc4=request-to-send received
*

WTO (Transaction Program $TPID$ starting.)
*
**
* Initialize and allocate a conversation with TPSERVER. *
*
* Set the symbolic destination name to "SERVER".

DATASAVE AREA=2,TEXT=(SERVER)
*
* Initialize a conversation with TPSERVER.

CMINIT(1,2,DC1)
*
* Set the conversation sync-level to "confirm".

SET DC2=1 * Sync-level
CMSSL(1,DC2,DC1)

*
* Allocate a conversation with TPSERVER.

CMALLC(1,DC1)
*
* Setup the send buffer and length.

DATASAVE AREA=3,TEXT=(LU $appcluid$, TP $tpid$$tpinstno$)+
(: Data sent from CLIENT to SERVER.) * Send data

SET DC3=LENG(3) * Send length
*
* Send data to TPSERVER.

CMSEND(1,3,DC3,DC4,DC1)
*
* Deallocate the conversation with TPSERVER.

CMDEAL(1,DC1)
*

WTO (Transaction Program $TPID$ complete.)
*

ENDTXT

SERVER: MSGTXT
**
* Message deck defining the TPSERVER Transaction Program. *
**
*
* Device save area usage:
* 1=conversation ID
* 2=receive buffer
*
* Device counter usage:
* dc1=return code
* dc2=requested length
* dc3=data received
* dc4=received length
* dc5=status received
* dc6=request-to-send received
*

WTO (Transaction Program $TPID$ starting.)
*
* Accept the conversation with TPCLIENT.

CMACCP(1,DC1)
*
* Set requested length for receive.

SET DC2=100
*
* Receive data from TPCLIENT.

CMRCV(1,2,DC2,DC3,DC4,DC5,DC6,DC1)

316 Creating Workload Simulator Scripts

*
* Confirm the data was received.

CMCFMD(1,DC1)
*

WTO (Transaction Program $TPID$ complete.)
IF $TPINSTNO$=’-00003’ THEN
WTO (Simulation complete.)

*
ENDTXT

STL procedures
@PROGRAM=CPICSMP2

@include cpicvar
@include cpiccon

CLIENT: MSGTXT
/***
* STL deck defining the TPCLIENT Transaction Program. *
***/

say ’Transaction Program’ tpid() ’starting.’

/**/
/* Initialize and allocate a conversation with TPSERVER. */

/* Set the symbolic destination name to "SERVER". */
sym_dest_name = ’SERVER’

/* Initialize a conversation with TPSERVER. */
CMINIT (conversation_ID, sym_dest_name, return_code)

/* Set the conversation sync-level to "confirm". */
CMSSL (conversation_ID, cm_confirm, return_code)

/* Allocate the conversation; the conversation type defaults to */
/* "mapped". */
CMALLC (conversation_ID, return_code)

/* Setup the send buffer and length. */
send_buffer = ’LU’ appcluid()’, TP’ tpid()tpinstno()||,

’: Data sent from A to B.’
send_length = length(send_buffer)

/* Send data to TPSERVER. */
CMSEND (conversation_ID, send_buffer, send_length,,

request_to_send_received, return_code)

/* Deallocate the conversation with TPSERVER. */
CMDEAL (conversation_ID, return_code)

say ’Transaction Program’ tpid() ’complete.’

ENDTXT

SERVER: MSGTXT
/***
* STL deck defining the TPSERVER Transaction Program. *
***/

say ’Transaction Program’ tpid() ’starting.’

/* Accept the conversation with TPCLIENT. */
CMACCP (conversation_ID, return_code)

/* Receive data from TPCLIENT. */

Chapter 24. Message scripting examples 317

CMRCV (conversation_ID, receive_buffer, 100, data_received,,
received_length, status_received,,
request_to_send_received, return_code)

/* Confirm the data was received. */
CMCFMD (conversation_ID, return_code)

say ’Transaction Program’ tpid() ’complete.’
if tpinstno()=’-00003’ then
say ’Simulation complete.’

ENDTXT

318 Creating Workload Simulator Scripts

Chapter 25. AVMON example

AVMON (AVailability MONitor) is a WSim network designed to monitor the
availability and performance of real network subsystems (NetView® and TSO). This
sample monitors only NetView and TSO, but you can add more subsystems by
modifying the script as described later in this section.

Availability monitoring
AVMON monitors performance by logging the WSim LU on to a subsystem,
periodically sending a message, and sensing when the subsystem becomes
unavailable. When the LU detects unavailability, it sends a message to the operator
console alerting the operator to the problem.

Performance monitoring
WSim tracks the time for returning a response from the subsystem and reports
whenever a user-specified threshold is exceeded. Furthermore, by using the WSim
Response Time Utility the entire run's performance statistics can be compiled into a
single report.

Automated operations
AVMON can be modified to perform operator functions when it senses a resource
needs restarting. For a complete description of this feature, refer to “AVMON as an
automated operator” on page 322.

AVMON processing description
There are three levels of logical units (LUs) in the AVMON network: the network
controller (NETCTRL), the subsystem controllers (NETVCTRL and TSOCTRL), and
the subsystem terminal pools (NV01-03 and TS01-03 in this example). Figure 36 on
page 320 illustrates the relationship of each layer. Each level performs a different
function as described in the figure and in the subsequent paragraphs.

© Copyright IBM Corp. 1989, 2015 319

Note: This figure shows the relationship between WSim resources and the
subsystems under test. The physical configuration is not depicted here.

Network controller level
The NETCTRL LU uses the ACTRLNET message generation deck to act as a
network coordinator. It has the following functions:
v Providing initial coordination so the network will maintain synchronization.
v Starting the monitoring process at a designated start-of-day time and stopping

the process at a specified end-of-day time.
v Issuing messages to the operator console when requested to do so by another

LU or the AVMON operator or when providing a summary of availability
report.

Subsystem controller level
The NETVCTRL and TSOCTRL LUs use the AMONNETV and AMONTSO
message generation decks to act as controllers of the subsystem status pools. They
monitor the session between the currently active status pool LU and the subsystem
being monitored. If the pool LU fails to indicate that all is well (SW1=ON), the
subsystem controller LU takes these actions:
v Quiesces the pool LU whose session has recently failed
v Releases the next LU in the status pool from its quiesced state
v Restarts the network and refreshes the pool, if the pool becomes exhausted. It

uses the following WSim commands:
– OPCMND (C AVMON)
– OPCMND (I AVMON)
– OPCMND (S AVMON).

Subsystem terminal pool level
The subsystem terminal pool LUs initiate a session with the subsystem to be
monitored. In this example, only NetView and TSO are being monitored. You can

NV03

NV02

NETCTRL

WSim

NETVCTRL
NV01

TS03

TS02

TSOCTRL
TS01

NetView™
(Real)

TSO
(Real)

Figure 36. How AVMON is structured

320 Creating Workload Simulator Scripts

monitor more subsystems by copying and modifying the AMONTSO and
ACHKTSO decks to match your requirements.

For NetView
The NV01, NV02, and NV03 LUs use the ALOGNETV and ACHKNETV message
generation decks to log on to a NetView operator console and check the status of
network resources using the VTAM [D NET,NONE,ID=resource] command. The
value supplied for resource is user-determined and you may define it by modifying
the deck ACHKNETV at the locations indicated by comments.

When a D NET,NONE,ID=resource command is issued to a NetView console, one
of the following three responses may occur:

IST486I NAME=nodename, STATUS=status (Pre-VTAM 3.2)

IST486I CURRENT STATE=cstate, DESIRED STATE=dstate

IST088I DISPLAY FAILED- NODE NAME INVALID OR INACTIVE

IST453I parameter PARAMETER INVALID

A request is made to NETCTRL to issue a message for each one of these responses.
A message is issued for response IST486I only if the status is not active.

For TSO
The TSO1, TSO2, and TSO3 LUs use the ALOGTSO and ACHKTSO message
generation decks to log on to TSO and monitor TSO availability and performance.

Modifying AVMON for other subsystem monitoring
For each additional subsystem to be monitored for AVMON, you must make eight
changes to the original AVMON network:
1. Code a logon deck for the new subsystem status pool LUs to establish a session

with the subsystem to be monitored. Note that the DELAY=F180 on the
NTWRK statement will affect the logon process, so code DELAY=CANCEL on
any IF statements in the logon deck.

2. Copy the deck AMONTSO and change its name to match the new subsystem.
Study the script and modify it to meet the requirements of the new subsystem.

3. Copy the deck ACHKTSO and change its name to match the new subsystem.
Study the script and modify it to meet the requirements of the new subsystem.

4. Locate this statement in the deck ACTRLNET:
OPCMND (A TSOCTRL,RELEASE)

Copy that statement and change the name TSOCTRL to the name of your new
subsystem controller LU.

5. Provide another PATH statement with the new message generation deck you
modelled after ACHKTSO.

6. Provide a network configuration definition for the subsystem-level controller
you are adding. You can model it after the TSO subsystem-level controller
configuration statement. Code an FRSTTXT statement naming the new deck
that you modelled after AMONTSO.

7. Provide a pool of subsystem status LUs under the subsystem controller. You
can model them after the TSO pool. Code an FRSTTXT statement with the
name of your subsystem logon deck and a PATH= statement referring to the
new path statement.

Chapter 25. AVMON example 321

8. Look in the deck ACTRLNET for the section labeled “PUTAV”. Update the
WTO and LOG statements to reflect your new subsystems.

AVMON as an automated operator
The example of AVMON provided in this chapter is a passive monitoring tool. It
detects problems in the network, alerts the operator, but takes no action to correct
the problem. With only minor changes, AVMON can be made to perform just as an
operator would and correct problems automatically.

Automated operator requirements
To make AVMON an automated operator, you need to provide the following
information:
v WSim logic and message generation statements to take the action required to

correct the problem
v A method of delivering an operator command to the host operating system.

The WSim logic to recognize a resource problem is already in place. The message
generation deck ACHKNETV, executed by the LU name NV01, is continually
monitoring the availability of the network resources that you are interested in. The
STATUS=status (or CURRENT STATE=cstate) field of the VTAM message IST486I
(returned in response to the [D NET,NONE,ID=resource] sent by NV01) tells how
VTAM views the status of the resource. The immediate IF 8 in ACHKNETV is
looking for ACTIV, and if anything else is returned then there is a problem and
AVMON signals the operator. It is from this point that you will make AVMON an
automated operator.

The method of delivering an operator command to the host operating system is
not in place. It is up to you to provide this. The example that follows uses the IBM
program product Operator Communications Control Facility (MVS/OCCF,
program number 5665-288) to allow operator commands to be entered from a
NetView operator. You can use any product that provides a similar function.

An example of an AVMON automated operator
Assume you want AVMON to restart TSO whenever NV01 receives a
STATUS=CONCT (or CURRENT STATE=CONCT) from its [D NET,NONE,ID=TSO]
command. CONCT means that TSO is “connectable”, which means that it is
known by VTAM but not started. Using MVS/OCCF, you must make some
changes.

The NetView operator that NV01 uses to monitor system resources must log on to
MVS/OCCF. Find the section of ACHKNETV that looks like the following sample:
TEXT (AUTOWRAP YES)
ENTER

Next, add these two statements immediately after the ENTER:
TEXT (OCCF /QLOGON)
ENTER

Note: This example assumes the term “OCCF” is a recognizable NetView
command.

The restart function is provided immediately after IF 8. This is what this section
looks like before the changes:

322 Creating Workload Simulator Scripts

8 IF TEXT=(ACTIV),LOC=U+100,WHEN=IMMED,SCAN=50,
THEN=B-NOMSG

DATASAVE AREA=N+0,
TEXT=(+$RECALL,U+60,16$ $RECALL,U+14$ $RECALL,U+10,8$)

BRANCH LABEL=SIGNALSP

And this is how it would look after it has been tailored to include automated
operations:

8 IF TEXT=(ACTIV),LOC=U+100,WHEN=IMMED,SCAN=50,
THEN=B-NOMSG

9 IF TEXT=(TSO),LOC=U+60,SCAN=20,WHEN=IMMED,
ELSE=B-OTHER

10 IF TEXT=(CONCT),LOC=U+100,WHEN=IMMED,SCAN=50,
ELSE=B-OTHER

TEXT (OCCF S TSO)
ENTER
STOP
DATASAVE AREA=N+0,

TEXT=(ATTEMPT RESTART OF TSO BY AVMON AT),
($RECALL,U+10,8$)

BRANCH LABEL=SIGNALSP
OTHER DATASAVE AREA=N+0,

TEXT=(+$RECALL,U+60,16$ $RECALL,U+14$ $RECALL,U+10,8$)

BRANCH LABEL=SIGNALSP

The following changes were made to the message generation deck ACHKNETV to
perform the automated restart of TSO whenever CONCT is observed:
v Immediate IF 9 was added to see if the resource status was for TSO. If it wasn't,

then processing would branch to OTHER and a normal special message would
be sent to the operator.

v Immediate IF 10 was added to see if the status was CONCT. If it wasn't, then
processing would branch to OTHER and a normal special message would be
sent to the operator.

v A message is generated and sent to the NetView operator with the MVS/OCCF
interface with the TEXT/ENTER/STOP sequence. The term “OCCF” preceding
the operator command “S TSO” is included because in this example,
MVS/OCCF is used.

v A special message is generated and sent to the operator console by the
DATASAVE and BRANCH LABEL=SIGNALSP.

Generating a summary report with the WSim Loglist Utility
During the monitoring run, AVMON writes log records to the log data set. You can
use the Loglist Utility to format these log records into a concise report showing the
activity of the day.

The following Loglist Utility parameters configure the loglist into the final report.
You may want to modify these parameters to meet your specific requirements.
Figure 37 on page 325 is an example of a Loglist Utility report generated from the
log data set of a 2-hour AVMON run. The loglist of an AVMON run shows a brief

Chapter 25. AVMON example 323

history of the network activity from AVMON's point of view. Many of AVMON's
features were used during the run represented in Figure 37 on page 325, which
includes:
v Response time monitoring. AVMON detected many instances of TSO response

times longer than the maximum time allowed.
v Availability monitoring. AVMON detected the status of ITPECHO as “CONCT”.

Monitoring of the resource ITPECHO was accomplished by modifying the
message generation deck ACHKNETV. After AVMON notified the operator three
times, the operator restarted ITPECHO.

v Availability status reports. AVMON produces a summary report of the total time
of availability for the resources being monitored.

v Releasing additional terminals from the pool. The TSO terminal named TSO-01
lost contact with TSO. AVMON sensed this and released another from the TSO
pool. Monitoring of TSO then continued.

v Restart of the network when a pool is depleted. The TSO terminal pool was
exhausted because TSO went down (notice the records that show TSO
STATUS=CONCT). The Operator restarted TSO and AVMON restarted its
network to refresh the pool. Monitoring continued.

v Automatic end-of-day stop of AVMON. AVMON stopped WSim when a
specified end-of-day time was reached.

Loglist Utility run parameters
You can enter the following parameters from the console or provide them in a data
set referenced on the SYSIN statement of the Loglist Utility job stream.
v LOG
v NOCNSL
v NOFMT SHORT
v RUN
v END.

For more information concerning the use of the Loglist utility, refer to WSim
Utilities Guide.

324 Creating Workload Simulator Scripts

Generating a summary report with the Response Time Utility
The response time utility uses the information in the log data set to compile a set
of reports that give a clear picture of the response times observed in the
monitoring run.

You can use the following response time utility parameters to provide a set of
response time reports. You might want to modify these parameters to meet your
specific requirements.
PROCESS ACTUAL
TGRAPH INTERVAL=600,INCR=2,THRESH=50
GRAPH 2
PERCENT 90,95,99
REPORT LEVEL=TERM,

SUMMARY=(NOLIST,NOGRAPH,NOCGRAPH,NOTGRAPH,NOTRANS),
TERMGRP=(NOLIST,NOTRANS,NOCGRAPH,NOGRAPH,NOTGRAPH),
TERM=(NOLIST,NOTRANS,CGRAPH,GRAPH,TGRAPH)

BTRANS TYPE=EXEC,TEXT=(EXEC),SCAN=YES,TIME=START
ETRANS TEXT=(READY),SCAN=YES
RUN
END

You can enter these parameters from the console or provide them in a data set
referenced on the SYSIN statement of the response time utility job stream. For
more information about the use of the response time utility, refer to WSim Utilities

NETWORK APPCLU/TCPIP/ DEV/LU/TP START STOP READY RECORD DATA USER
NAME VTAMAPPL NAME NAME TIME TIME TIME TYPE LENG DATA
AVMON APPLNET NETCTRL-1 04541899 0096196 11000000 LOG 1 00
AVMON APPLNET NETCTRL-1 04541899 0096196 11000000 LOG 42 00 *** BEGIN MONITORING - 4:54:18, 07/14/02
AVMON APPLN1 NV01-1 04543705 0096196 11000000 LOG 37 00 +NETVIEW IS NOW RESPONDING - 4:54:37
AVMON APPLT1 TSO1-1 04545158 0096196 11000000 LOG 33 00 +TSO IS NOW RESPONDING - 4:54:51
AVMON APPLT1 NETCTRL-1 05095710 0096196 11000000 LOG 60 00 -TSO HAS BAD RESPONSE TIME AT 05:09:57
AVMON APPLT1 NETCTRL-1 05215948 0096196 11000000 LOG 60 00 -TSO HAS BAD RESPONSE TIME AT 05:21:59
AVMON APPLT1 NETCTRL-1 05224433 0096196 11000000 LOG 60 00 +ITPECHO CK ECHO STATUS= CONCT 05:22:44
AVMON APPLT1 NETCTRL-1 05255448 0096196 11000000 LOG 60 00 +ITPECHO CK ECHO STATUS= CONCT 05:25:54
AVMON APPLT1 NETCTRL-1 05290965 0096196 11000000 LOG 60 00 +ITPECHO CK ECHO STATUS= CONCT 05:29:09
AVMON APPLT1 NETCTRL-1 05464936 0096196 11000000 LOG 60 00 -TSO HAS BAD RESPONSE TIME AT 05:46:49
AVMON APPLT1 NETCTRL-1 05542095 0096196 11000000 LOG 60 00 -TSO-01 IS NOT RESPONDING - 5:54:20
AVMON APPLT1 NETCTRL-1 05543007 0096196 11000000 LOG 43 00 +AVAILABILITY WITHIN 060 MINUTES - 5:54:34
AVMON APPLT1 NETCTRL-1 05543007 0096196 11000000 LOG 20 00 +NETVIEW 060 TSO 057
AVMON APPLT2 TSO2-1 05563860 0096196 11000000 LOG 33 00 +TSO IS NOW RESPONDING - 5:56:38
AVMON APPLNET NETCTRL-1 05564384 0096196 11000000 LOG 60 00 -TSO HAS BAD RESPONSE TIME AT 05:56:43
AVMON APPLNET NETCTRL-1 06084372 0096196 11000000 LOG 60 00 -TSO HAS BAD RESPONSE TIME AT 06:08:43
AVMON APPLNET NETCTRL-1 06114271 0096196 11000000 LOG 60 00 -TSO HAS BAD RESPONSE TIME AT 06:11:42
AVMON APPLNET NETCTRL-1 06310374 0096196 11000000 LOG 60 00 +TSO CHECK TSO STATUS=CONCT 6:31:03
AVMON APPLNET NETCTRL-1 06340903 0096196 11000000 LOG 60 00 +TSO CHECK TSO STATUS=CONCT 6:34:09
AVMON APPLNET NETCTRL-1 06352124 0096196 11000000 LOG 60 00 -TSO-02 IS NOT RESPONDING - 6:35:21
AVMON APPLNET NETCTRL-1 06371918 0096196 11000000 LOG 60 00 +TSO CHECK TSO STATUS=CONCT 6:37:19
AVMON APPLNET NETCTRL-1 06402133 0096196 11000000 LOG 60 00 -TSO-03 IS NOT RESPONDING - 6:40:21
AVMON APPLNET NETCTRL-1 06422164 0096196 11000000 LOG 43 00 +AVAILABILITY WITHIN 102 MINUTES - 6:42:21
AVMON APPLNET NETCTRL-1 06422164 0096196 11000000 LOG 20 00 +NETVIEW 012 TSO 096
AVMON APPLNET NETCTRL-1 06422164 0096196 11000000 LOG 60 00 *** TSO POOL EXHAUSTED, REINIT AVMON - 6:42:21
AVMON APPLNET NETCTRL-1 06422164 0096196 11000000 LOG 60 00 *** RESTART OF AVMON BY TSOCTRL - 6:42:21
AVMON APPLNET NETCTRL-1 06423352 0096196 11000000 LOG 1 00
AVMON APPLNET NETCTRL-1 06423352 0096196 11000000 LOG 42 00 *** BEGIN MONITORING - 6:42:33, 07/14/02
AVMON APPLN1 NV01-1 06424929 0096196 11000000 LOG 37 00 +NETVIEW IS NOW RESPONDING - 6:42:49
AVMON APPLT1 TS01-1 06443307 0096196 11000000 LOG 33 00 +TSO IS NOW RESPONDING - 6:44:33
AVMON APPLNET NETCTRL-1 06445690 0096196 11000000 LOG 60 00 -TSO HAS BAD RESOPNSE TIME AT 06:44:56
AVMON APPLNET NETCTRL-1 06473708 0096196 11000000 LOG 60 00 -TSO HAS BAD RESOPNSE TIME AT 06:47:37
AVMON APPLNET NETCTRL-1 06504186 0096196 11000000 LOG 60 00 -TSO HAS BAD RESOPNSE TIME AT 06:50:41
AVMON APPLNET NETCTRL-1 06533928 0096196 11000000 LOG 60 00 -TSO HAS BAD RESOPNSE TIME AT 06:53:39
AVMON APPLNET NETCTRL-1 06563697 0096196 11000000 LOG 60 00 -TSO HAS BAD RESOPNSE TIME AT 06:56:36
AVMON APPLNET NETCTRL-1 06594064 0096196 11000000 LOG 60 00 -TSO HAS BAD RESOPNSE TIME AT 06:59:40
AVMON APPLNET NETCTRL-1 07004408 0096196 11000000 LOG 43 00 +AVAILABILITY WITHIN 018 MINUTES - 7:00:44
AVMON APPLNET NETCTRL-1 07004408 0096196 11000000 LOG 20 00 +NETVIEW 018 TSO 018
AVMON APPLNET NETCTRL-1 07004408 0096196 11000000 LOG 43 00 *** END OF MONITORING - 7:00:44 07/14/02

Figure 37. Loglist report of AVMON run

Chapter 25. AVMON example 325

Guide.

--
TERMINAL REPORT NETWORK ALL NETWORKS PROCESS ACTUAL TIME LIMITS ALL TRANSACTION *ALL*

VTAMAPPL APPLT1 EXIT START TIME 062351
TERMINAL TSO1-1 TERMTYPE LU2 END TIME 072421

--
MEAN RESPONSE 4.98 MESSAGES SENT 29 NUMBER OF RESPONSES 23 SNA RESP SENT 63
MEDIAN RESPONSE 4.51 AVERAGE LENGTH 33 PER MINUTE 0 SNA RESP RECV 1
MODE RESPONSE 4.51 PER MINUTE 0 RESPONSES DISCARDED 0
LOW RESPONSE 2.60 MESSAGES RECEIVED 63 VARIANCE 7.1095
HIGH RESPONSE 13.33 AVERAGE LENGTH 80 95 PERCENT CI --
AVERAGE QUEUE TIME 0.44 PER MINUTE 1
PERCENTILE RESPONSE TIME AVERAGE

90 6.48 4.26
95 11.72 4.60
99 13.33 4.98

RESPONSE TIME FREQUENCY DISTRIBUTION
NETWORK 100 |---|
VTAMAPPL APPLT1 | |
TERMINAL TSO1-1 | |
TRANSACT *ALL* | |

| |
90 |---|

| |
| |
| |
| |

80 |---|
| |
| |
| |
| |

70 |---|
| |
| |
| |
| |

60 |---|
| |
| |
| |
| |

PERCENTAGE 50 |---|
| |

OF | |
| |

RESPONSES | |
40 |---|

| |
| |
| |
| |

30 |---|
| |
| |
| |
| |

20 |---|
| |
| |
| * |
| * |

10 |---------------*---|
| * * * * * |
| * * * * * |
| * * * * * * * * * * * * * * * * |
| * * * * * * * * * * * * * * * * |

| + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + +
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

RESPONSE TIME (SECONDS) INCREMENT = 0.2 SECONDS
PERCENTAGE ABOVE LAST INCREMENT = 4.3

CUMULATIVE RESPONSE TIME DISTRIBUTION
NETWORK 100 |---|
VTAMAPPL APPLT1 | |
TERMINAL TSO1-1 | * |
TRANSACT *ALL* | |

| * |
90 |---|

| |
| * * |
| |
| * |

80 |---|
| * * |
| |
| * |
| |

70 |------------------------------------*--|
| |
| |
| |
| |

60 |---------------------------------*---|
| |
| * * |
| |
| |

Figure 38. Response Time Utility report of AVMON run

326 Creating Workload Simulator Scripts

PERCENTAGE 50 |---|
| * |

OF | |
| |

RESPONSES | |
40 |-----------------------*-*---|

| |
| |
| * * |
| |

30 |---------------*-*---|
| |
| |
| |
| |

20 |---|
| * |
| |
| * |
| |

10 |---|
| |
| |
| * |
| |

| + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + +
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

RESPONSE TIME (SECONDS) INCREMENT = 0.2 SECONDS

NETWORK TIME GRAPH OF RESPONSES < MINIMUM
VTAMAPPL APPLT1 INTERVAL = 180 SEC * AVERAGE
TERMINAL TSO1-1 INCREMENT= 0.2 SEC > MAXIMUM
TRANSACT *ALL* RESPONSE TIME (SECONDS)

| |
TIME NUMBER OF | 1 1 1 1 1 2|

RESPONSES |0----+----2----+----4----+----6----+----8----+----0----+----2----+----4----+----6----+----8----+----0|
6.26.00 1 | T * |
6.29.00 1 | * T |
6.32.00 1 | * T |
6.35.00 1 | * T |
6.38.00 1 | * T |
6.41.00 1 | T * |
6.44.00 1 | * T |
6.47.00 1 | * T |
6.50.00 1 | T * |
6.53.00 1 | * T |
6.56.00 1 | T * |
6.59.00 1 | * T |
7.02.00 1 | * T |
7.05.00 1 | * T |
7.08.00 1 | T |
7.11.00 1 | * T |
7.14.00 1 | T * |
7.17.00 1 | * T |
7.20.00 1 | T * |
7.23.00 1 | T * |
7.26.00 1 | T |

AVMON decks
The following examples are the message generation decks for the sample AVMON
configuration. Refer to WSim User's Guide for the location of these files on the
WSim distribution tape.

AVMON VTAMAPPL configuration
AVMON NTWRK HEAD=’AVAILABILITY MONITOR’,

* AVMON is a set of WSim scripts that may be used to monitor the *
* availability and status of network subsystems and resources. *
* *
* This example of AVMON monitors two subsystems: TSO and NetView. *
* More subsystems may be monitored by modifying the AMONTSO and *
* ACHKTSO decks to meet the requirements of the additional subsystems.*
* *
* AVMON is configured to run as a VTAMAPPL network. It is not *
* necessary to dedicate any communications controllers to this *
* monitoring activity. Running as a VTAMAPPL configuration does not *
* restrict the use of this tool only to the subsystems resident in *
* the host processor that contains WSim. Cross domain resources may *
* be monitored as well providing the network is capable of routing *
* across domains. *
* *
* Each message deck is preceded with a comment box that outlines *
* the basic purpose of the deck and what WSim counters, switches, *
* and areas are referenced in the deck. Throughout each deck are *

Chapter 25. AVMON example 327

* comment blocks that describe the processing flow of the script. *
* *
* Certain aspects of this network will need to be tailored to meet *
* your specific requirements. These areas are underscored with *
* "====" and are labeled with the word "CHANGE". *

DELAY=F180,
* ==== <--------------------------------------CHANGE

DISPLAY=(24,80),
INIT=SEC,
REPORT=NONE,
OPTIONS=(NORRLOG),
MSGTRACE=NO,

* == <-------------------------------------CHANGE
STLTRACE=NO,

* == <-------------------------------------CHANGE
NETUSER=400,
USERAREA=200,
BUFSIZE=3000,
UTI=100

INCLUDE AFORTIME

1 PATH ACHKNETV
2 PATH ACHKTSO

APPLNET VTAMAPPL
NETCTRL LU LUTYPE=LU0,

FRSTTXT=ACTRLNET

APPLTC VTAMAPPL
TSOCTRL LU LUTYPE=LU0,

FRSTTXT=AMONTSO

APPLT1 VTAMAPPL
TS01 LU LUTYPE=LU2,FRSTTXT=ALOGTSO,PATH=(2),

MAXSESS=(0,1),DISPLAY=(24,80)
APPLT2 VTAMAPPL
TS02 LU LUTYPE=LU2,FRSTTXT=ALOGTSO,PATH=(2),

MAXSESS=(0,1),DISPLAY=(24,80)
APPLT3 VTAMAPPL
TS03 LU LUTYPE=LU2,FRSTTXT=ALOGTSO,PATH=(2),

MAXSESS=(0,1),DISPLAY=(24,80)

APPLNC VTAMAPPL
NETVCTRL LU LUTYPE=LU0,

FRSTTXT=AMONNETV

* The value of DELAY= will determine how quickly NV01, NV02, or NV03 *
* will cycle through the list of resources in ACHKNETV. In this *
* example there are only two resources (TSO and NetView), so a value *
* of DELAY=F90 will mean each resource will be checked every three *
* minutes. *

APPLN1 VTAMAPPL
NV01 LU LUTYPE=LU2,FRSTTXT=ALOGNETV,PATH=(1),SAVEAREA=(1,6000),

MAXSESS=(0,1),DISPLAY=(24,80),DELAY=F90
* === <-------CHANGE
APPLN2 VTAMAPPL
NV02 LU LUTYPE=LU2,FRSTTXT=ALOGNETV,PATH=(1),SAVEAREA=(1,6000),

MAXSESS=(0,1),DISPLAY=(24,80),DELAY=F90
* === <-------CHANGE
APPLN3 VTAMAPPL
NV03 LU LUTYPE=LU2,FRSTTXT=ALOGNETV,PATH=(1),SAVEAREA=(1,6000),

328 Creating Workload Simulator Scripts

MAXSESS=(0,1),DISPLAY=(24,80),DELAY=F90
* === <-------CHANGE

ACTRLNET message generation deck
ACTRLNET MSGTXT

* This message deck is used by the LU named NETCTRL and acts as a *
* network controller. *
* *
* Comment sections in this deck are boxed with asterisks (*). *
* *
* The following switches, counters, and areas are referenced in this *
* message deck: *
* *
* Switches: NSW32 (request by monitoring terminal for *
* special message print) *
* *
* Counters: NC1 (counts minutes of elapsed time) *
* NC2 (counts minutes of avail. for NetView) *
* NC3 (counts minutes of availability for TSO) *
* NC4 (additional subsystem avail. counter) *
* NC5 (additional subsystem avail. counter) *
* NC6 (additional subsystem avail. counter) *
* NC7 (additional subsystem avail. counter) *
* NC8 (additional subsystem avail. counter) *
* NC9 (additional subsystem avail. counter) *
* NC10 (additional subsystem avail. counter) *
* DSEQ (triggers printing of message to log) *
* *
* Areas: N+0 (network special message area, length 60) *
* N+100 (NetView special message area, length 60) *
* N+200 (TSO special message area, length 60) *
* U+10 (reformatted time of day, length 8) *
* *
* Message generation statements which may need changing to match your *
* requirements are marked with the word "CHANGE". *

* When EVENT=SPECMSG is observed, special messages are output to the *
* the operator screens and to the log. *
* *
* When EVENT=PUTAV is observed, the availability summary is sent to *
* the screen and log. *
* *
* The two OPCMND statements ensure the network resources are *
* synchronized with NETCTRL LU. *

DATASAVE AREA=N+0,TEXT=()
DATASAVE AREA=N+1,TEXT=($RECALL,N+0,299$)
ON EVENT=SPECMSG,THEN=E-LSPECMSG
ON EVENT=PUTAV,THEN=E-PUTAV
OPCMND (A AVMON,QUIESCE)
OPCMND (A NETCTRL,RELEASE)

* Deck AFORTIME reformats the standard time of day (HHMMSS) into a *
* more readable format (HH:MM:SS). *
* *
* The TEXT=() on the IF statement specifies when system availability *
* monitoring is to start. If TOD is greater than that specified, *
* processing with branch to RELEASE and monitoring will begin, else *
* check again in 10 seconds. *

CHKSERVB LABEL

Chapter 25. AVMON example 329

CALL NAME=AFORTIME
000 IF WHEN=IMMED,LOC=U+10,TEXT=(07:30),COND=GE,THEN=B-RELEASE

WAIT TIME=10 ===== <----------------CHANGE
BRANCH LABEL=CHKSERVB

* Availability monitoring has begun. A message indicating time and *
* date is written to the operator screen and to the log. *

RELEASE LABEL

CALL NAME=AFORTIME
WTO ()
LOG ()
WTO (*** BEGIN MONITORING - $RECALL,U+10,8$, $MONTH$/DAY/*

$YEAR$)
LOG (*** BEGIN MONITORING - $RECALL,U+10,8$, $MONTH$/DAY/*

$YEAR$)

* The LU’s that act as controllers to the system monitoring pools are *
* now activated. *

OPCMND (A TSOCTRL,RELEASE)
OPCMND (A NETVCTRL,RELEASE)

* The other control terminals are given 10 seconds to increment their *
* availability counters. *

WAIT TIME=10

* The LU waits for 3 minutes, gets the time of day, increments the *
* elapsed time counter (NC1), increments the number of 3 minute time *
* increments that have passed (DSEQ), then evaluates the following *
* logic tests: *
* *
* IF 001: stops WSim if the end of availability monitoring has *
* been reached or exceeded. *
* IF 002: prints the availability status if another control *
* terminal has requested it (by setting NSW32). *
* IF 003: prints the availability status when the specified *
* time interval has elapsed. DSEQ counts in 3 minute *
* intervals. One hour would be DSEQ=20 (20x3). *
* *
* If no THEN actions are taken, processing loops back to the 3 minute *
* wait at label "WAITLAP". *

WAITLAP WAIT TIME=180

CALL NAME=AFORTIME
SET NC1=+3
SET DSEQ=+1

001 IF WHEN=IMMED,LOC=U+10,TEXT=(18:00),COND=GE,THEN=C-STOPWSIM
* ===== <-----------------CHANGE
002 IF WHEN=IMMED,LOC=NSW32,THEN=C-PUTAV
003 IF WHEN=IMMED,LOC=DSEQ,TEXT=20,THEN=C-PUTAV
* == <--------------------CHANGE

BRANCH LABEL=WAITLAP

* If an availability status print was requested as determined by *
* IF 002 or IF 003, then the status is written to the operator screen *
* and the log. Once completed, NSW32 (request to print status by *
* another controlling terminal) is set OFF and DSEQ is reset to zero *
* (DSEQ counts the number of 3 minute intervals between normal status *
* prints). *
* *
* Processing then returns to the point from which "PUTAV" was called *

PUTAV LABEL
WTO (+AVAILABILITY WITHIN $CNTR,NC1,3$ MINUTES - $RECALL,U+10,8$)

330 Creating Workload Simulator Scripts

WTO (+NETVIEW $CNTR,NC2,3$ TSO $CNTR,NC3,3$)
LOG (+AVAILABILITY WITHIN $CNTR,NC1,3$ MINUTES - $RECALL,U+10,8$)
LOG (+NETVIEW $CNTR,NC2,3$ TSO $CNTR,NC3,3$)

* If logging to tape is to be performed, then comment out or delete *
* each OPCMND (E) statement. They are intended for use on logging to *
* disk runs only. These statements are included to preserve the *
* log dataset at regular intervals. *
* *
* When logging to disk, ensure the LOGDD statement on the execution *
* JCL specifies DISP=MOD, otherwise the file will be closed and re- *
* opened at the beginning (thus destroying all the previous logging). *

OPCMND (E) <--CHANGE
OPCMND (E) <--CHANGE
SETSW NSW32=OFF
SET DSEQ=0
RETURN

* The following sections is EXECUTED (performed immediately) whenever *
* the event "SPECMSG" is signalled by one of the other controlling *
* terminals. The special message is written to the operator screen *
* and to the log, then copied to the NetView special msg. area N+100. *
* EVENT NETVMSG is signalled, which writes the message to a NetView *
* operator. The network special message area is then cleared and *
* the on EVENT=SPECMSG is reset. Processing then returns to the *
* point where the signalled event was detected. *

LSPECMSG LABEL

WTO ($RECALL,N+0,60$)
LOG ($RECALL,N+0,60$)
DATASAVE AREA=N+100,TEXT=($RECALL,N+0,100$)
EVENT SIGNAL=NETVMSG
DATASAVE AREA=N+0,TEXT=()
DATASAVE AREA=N+1,TEXT=($RECALL,N+0,99$)
ON EVENT=SPECMSG,THEN=E-LSPECMSG
RETURN

* WSim is stopped when the availability monitoring is no longer *
* desired as determined by IF 001. The time of day is determined *
* and a message is written to the operator screen and the log. Then *
* WSim is stopped with the OPCMND (Z END). *

STOPWSIM LABEL

CALL LABEL=PUTAV
CALL NAME=AFORTIME
WTO (*** END OF MONITORING - $RECALL,U+10,8$ $MONTH$/DAY*

/$YEAR$)
LOG (*** END OF MONITORING - $RECALL,U+10,8$ $MONTH$/DAY*

/$YEAR$)
OPCMND (Z END)
RETURN
ENDTXT

AFORTIME message generation deck
AFORTIME MSGTXT

* This deck reformats the time of day data field option into a more *
* readable format (from HHMMSS to HH:MM:SS). *

DATASAVE AREA=U+12,TEXT=($TOD,6$)
DATASAVE AREA=U+10,

TEXT=($RECALL,U+12,2$:$RECALL,U+14,2$:$RECALL,U+16,2$)

Chapter 25. AVMON example 331

RETURN
ENDTXT

AMONNETV message generation deck
AMONNETV MSGTXT

* This message deck is used by the LU named NETVCTRL and acts as a *
* controller of the 3 NetView terminals that check the availability *
* of the named system resources. *
* *
* Comment sections in this deck are boxed with asterisks (*). *
* *
* The following switches, counters, and areas are referenced in this *
* message deck: *
* *
* Switches: NSW1 (set by one of the NetView terminals, *
* it indicates the state of the NetView *
* system) *
* *
* Counters: NC2 (counts minutes of avail. for NetView) *
* DSEQ (tracks which NetView terminal is active) *
* *
* Areas: N+0 (network special message area, length 60) *
* U+10 (reformatted time of day, length 8) *
* *
* Message generation statements which may need changing to match your *
* requirements are marked with the word "CHANGE". *

* An initial wait of one second is provided to allow NETCTRL to *
* quiesce all LU’s and establish synchronization. DSEQ is *
* incremented to track which NetView terminal from the pool is *
* currently active. The first NetView terminal is released from its *
* quiesced state. *

WAIT TIME=1
SET DSEQ=1
OPCMND (A NV01,RELEASE)

* NETVCTRL goes into a 3 minute wait while the NetView terminal *
* under its control continues to issue D NET commands (and thus *
* monitor the status of NetView). After 3 minutes have expired the *
* time of day is reformatted (AFORTIME) and a logic test of NSW1 *
* is evaluated. If NSW1 is on, then processing will branch to *
* label "OK", indicating the NetView terminal is satisfied with the *
* response from the D NET command. *

CHECK LABEL

WAIT TIME=180
CHECK1 LABEL

CALL NAME=AFORTIME
0 IF LOC=NSW1,WHEN=IMMED,THEN=B-OK,ELSE=CONT

* Processing of this section indicates NSW1 was off for the previous *
* IF. Two more tests of NSW1 will occur, each one minute apart. If *
* after 2 minutes NSW1 is not turned on, then the NetView *
* terminal is assumed inactive and steps are taken to start the next *
* LU in the NetView terminal pool. *

DATASAVE AREA=N+0,
TEXT=(-NETV-$CNTR,DSEQ,2$ IS NOT RESPONDING - $RECALL,U+10,8$)
EVENT SIGNAL=SPECMSG
WAIT TIME=60

332 Creating Workload Simulator Scripts

1 IF LOC=NSW1,WHEN=IMMED,THEN=B-NOWOK
WAIT TIME=60

2 IF LOC=NSW1,WHEN=IMMED,ELSE=B-REINIT

* Previous tests of NSW1 were met, indicating NetView is operational. *
* If NSW1 was on for IF 1, then "NOWOK" is processed: a special *
* message is written to indicate the NetView terminal is again *
* responding. If NSW1 was on all along, then "OK" is processed: NSW1 *
* is turned off, and the NetView availability counter is incremented *
* by 3 minutes. *

NOWOK LABEL

CALL NAME=AFORTIME
DATASAVE AREA=N+0,
TEXT=(+NETV-$CNTR,DSEQ,2$ IS RESPONDING AGAIN - $RECALL,U+10,8$)
EVENT SIGNAL=SPECMSG

OK LABEL
SETSW NSW1=OFF
SET NC2=+3
BRANCH LABEL=CHECK

* NSW1 was never determined to be on, so the NetView terminal is *
* assumed to be inactive at this point. It will be quiesced and the *
* next LU in the terminal pool will be released from its quiesced *
* state. This is controlled according to the value of DSEQ, which *
* was tracking which NetView terminal was currently in operation. *
* If no more LU’s are available from the pool, then processing *
* branches to "NOMORE". *

REINIT LABEL
3 IF LOC=DSEQ,TEXT=1,WHEN=IMMED,ELSE=B-N1

OPCMND (A NV01,QUIESCE)
OPCMND (A NV02,RELEASE)
BRANCH LABEL=ENDUP

N1 LABEL
4 IF LOC=DSEQ,TEXT=2,WHEN=IMMED,ELSE=B-NOMORE

OPCMND (A NV02,QUIESCE)
OPCMND (A NV03,RELEASE)
BRANCH LABEL=ENDUP

* The next NetView terminal has been released and the value of DSEQ *
* is incremented by one. NETVCTRL waits for 180 seconds and *
* processing branches to "CHECK1". *

ENDUP LABEL

SET DSEQ=+1
WAIT TIME=180
BRANCH LABEL=CHECK1

* The NetView terminal pool is exhausted. Event PUTAV is signalled *
* write the availability summary. A special message *
* is written to the network special message area and then EVENT *
* SPECMSG is signalled to write it out to the operator screen and to *
* the log. Then this WSim network (AVMON) is CANCELLED, INITIALIZED, *
* and STARTED via the OPCMND’s. *

NOMORE LABEL

CALL NAME=AFORTIME
EVENT SIGNAL=PUTAV
DATASAVE AREA=N+0,
TEXT=(*** NETV POOL EXHAUSTED, REINIT AVMON - $RECALL,U+10,8$)
EVENT SIGNAL=SPECMSG

5 IF LOC=U+10,WHEN=IMMED,COND=GE,TEXT=(17:30),THEN=B-NOREST
* ===== <------------CHANGE

DATASAVE AREA=N+0,
TEXT=(*** RESTART OF AVMON BY $LUID$ - $RECALL,U+10,8$)

Chapter 25. AVMON example 333

EVENT SIGNAL=SPECMSG
OPCMND (C AVMON)
OPCMND (I AVMON)
OPCMND (S AVMON)
BRANCH LABEL=WAIT

NOREST LABEL
DATASAVE AREA=N+0,
TEXT=(*** NO RESTART OF AVMON AT THIS TIME - $RECALL,U+10,8$)
EVENT SIGNAL=SPECMSG

WAIT WAIT
BRANCH LABEL=WAIT
ENDTXT

ALOGNETV message generation deck
ALOGNETV MSGTXT

* The following deck is used to logon to NetView. The userid’s to *
* be used are assumed to be WSIM01, WSIM02, and WSIM03. *
* *
* Comment sections in this deck are boxed with asterisks (*). *
* *
* The following switches, counters, and areas are referenced in this *
* message deck: *
* *
* Switches: (there are no switches referenced) *
* *
* Counters: (there are no counters referenced) *
* *
* Areas: U+0 (userid work area, length 6) *
* *
* Message generation statements which may need changing to match your *
* requirements are marked with the word "CHANGE". *

* The following section composes the userid (concatenating "WSIM" *
* and the last 2 digits of the LU name) and issues the CMND *
* that will establish the session. *

WAIT TIME=10
DATASAVE AREA=U+2,TEXT=($ID,4$)
DATASAVE AREA=U+0,TEXT=(WSIM)
CMND COMMAND=INIT,MODE=D6327802,RESOURCE=NETV

* ======== ==== <--------CHANGE

* The following IF holds up processing until the text "PASSWORD" is *
* encountered. *

0 IF LOC=B+0,SCAN=YES,TEXT=(PASSWORD),THEN=CONT,ELSE=WAIT,

STATUS=HOLD,DELAY=CANCEL

* The next section delivers the necessary information to logon to *
* NetView. The first TEXT statement delivers the userid as composed *
* earlier in this logon deck. *
* *
* The second TEXT statement delivers the password for this particular *
* userid. The password you provide for each userid (WSIM01, WSIM02, *
* and WSIM03) should end with the same two digit suffix as the *
* userid. The value of "yourpw" you provide below, coupled with the *
* last two digits of the userid name ($RECALL,U+4,2$) will comprise *
* the password. Ensure that all passwords begin with the value *
* supplied at "yourpw". *

TEXT ($RECALL,U+0,6$)
TAB
TEXT (yourpw$RECALL,U+4,2$)

334 Creating Workload Simulator Scripts

* ====== <---CHANGE
TAB
TAB
TAB
TEXT (NO)
ENTER

* This last section waits until NetView is fully functional before *
* continuing. By using IF 0, the previous IF named 0 is deactivated *
* and this IF takes its place, looking for the underscore line *
* (-----) as an indication of NetView operation. The time of day *
* is then reformatted (AFORTIME) and a message is written to the *
* operator screen and to the log telling of the new LU in session *
* with NetView. *

DELAY TIME=F1
0 IF LOC=B+0,SCAN=YES,TEXT=(-----),THEN=B-RETURN,DELAY=CANCEL
WAIT WAIT

BRANCH LABEL=WAIT
RETURN CALL NAME=AFORTIME

WTO (+NETVIEW IS NOW RESPONDING - $RECALL,U+10,8$)
LOG (+NETVIEW IS NOW RESPONDING - $RECALL,U+10,8$)
ENDTXT

ACHKNETV message generation deck
ACHKNETV MSGTXT
**
* This message deck is used by the NetView terminal to monitor *
* the status of network resources by issuing a DISPLAY NET command *
* from the NetView terminal. *
* *
* Comment sections in this deck are boxed with asterisks (*). *
* *
* The following switches, counters, and areas are referenced in this *
* message deck: *
* *
* Switches: NSW1 (Used by the LU executing this deck to *
* indicate to NETVCTRL that it’s still *
* active) *
* *
* Counters: DC1 (Used to track the number of special *
* messages stacked in the save area but *
* not yet sent to NetView) *
* *
* Areas: N+0 (network special message area, length 60) *
* N+100 (The NetView special msg area, length 60) *
* U+10 (Reformatted time of day, length 8) *
* U+20 (resource name work area, length 16) *
* U+40 (resource name setup area, length 16) *
* U+60 (resource name message area, length 16) *
* U+80 (status message area, length 14) *
* U+100 (VTAM message capture area, length 65) *
* *
* *
* *
* Message generation statements which may need changing to match your*
* requirements are marked with the word "CHANGE". *
**
* The VTAM message capture area (U+100) is cleared of any data and *
* AUTOWRAP is set on. *
**

DATASAVE AREA=U+100,TEXT=()
TEXT (AUTOWRAP YES)
ENTER

Chapter 25. AVMON example 335

**
* ON EVENT=NETVMSG is set to execute SNETVMSG whenever NETVMSG is *
* signalled. This will concatenate the special message to the *
* special message queue in savearea 1. *
* *
* ON EVENT=NETVMSGL is set to call LNETVMSG whenever NETVMSGL is *
* signalled. NETVMSGL is signalled in SNETVMSG. This will send *
* the special messages from savearea 1 to the NetView console. *
* *
* IF 0 executes DATASAV1 whenever the VTAM message IST486I is *
* observed. This will be the status response to a valid resource *
* requested with the D NET command later in this deck. *
* *
* IF 1 and 2 executes DATASAV1 whenever IST088I or IST453I is *
* observed. IST088I is the VTAM response when D NET on an unknown *
* or inactive resource is performed with VTAM R2 or before. IST453I *
* results with VTAM R3 or later. *
* *
* IF 3 executes DATASAV2 whenever the string STATUS= is observed. *
* "STATUS=" is part of the IST486 message for pre-VTAM 3.2. *
* *
* IF 4 executes DATASAV3 whenever the string STATE is observed. *
* "STATE" is part of the IST486 message for VTAM 3.2. *
**

ON EVENT=NETVMSG,THEN=E-SNETVMSG
ON EVENT=NETVMSGL,THEN=C-LNETVMSG

0 IF TEXT=(IST486I),LOC=D+0,SCAN=YES,THEN=E-DATASAV1,
STATUS=HOLD

1 IF TEXT=(IST088I),LOC=D+0,SCAN=YES,THEN=E-DATASAV1,
STATUS=HOLD

2 IF TEXT=(IST453I),LOC=D+0,SCAN=YES,THEN=E-DATASAV1,
STATUS=HOLD

3 IF TEXT=(STATUS=),LOC=D+0,SCAN=YES,THEN=E-DATASAV2,
STATUS=HOLD

4 IF TEXT=(STATE),LOC=D+0,SCAN=YES,THEN=E-DATASAV3,
STATUS=HOLD

BRANCH LABEL=NODELAY

**
* The following section is used to determine what resource will be *
* named in the D NET command. The TEXT operand of the DATASAVE *
* statement names the resource. More resources may be monitored by *
* replicating the DATASAVE and CALL statements and changing the *
* TEXT operand. Data following the resource may be included to *
* provide a brief comment to the operator. *
**
REPEAT LABEL

SETSW NSW1=ON
NODELAY LABEL

DATASAVE AREA=U+20,TEXT=(ITPECHO)
CALL LABEL=NETVDIS
DATASAVE AREA=U+20,TEXT=(APPL5)
CALL LABEL=NETVDIS
BRANCH LABEL=REPEAT

**
* NETVDIS first formats the time of day in a more readable format *
* (AFORTIME), moves resource data in the USERAREA and then branches *
* to either NOMSG (no VTAM message is stored in U+100), IST486I *
* (a status response to the D NET is stored in U+100), or IST088I/ *
* IST453I (the resource requested was inactive or unknown to VTAM). *
**
NETVDIS LABEL

CALL NAME=AFORTIME
DATASAVE AREA=U+60,TEXT=($RECALL,U+40,20$)
DATASAVE AREA=U+40,TEXT=($RECALL,U+20,20$)

4 IF TEXT=(’00’),LOC=U+100,WHEN=IMMED,THEN=B-NOSMSG

336 Creating Workload Simulator Scripts

5 IF TEXT=(IST486I),LOC=U+100,WHEN=IMMED,THEN=B-IST486I
6 IF TEXT=(IST088I),LOC=U+100,WHEN=IMMED,THEN=B-IST088I
7 IF TEXT=(IST453I),LOC=U+100,WHEN=IMMED,THEN=B-IST453I

BRANCH LABEL=NOSMSG

**
* The following section is called when immediate IF 6 above detects *
* VTAM message IST486I stored in U+100. NSW1 is set on to indicate *
* a valid response. Immediate IF 8 checks if the status was "ACTIV",*
* and if so then processing branches to NOMSG. If not, then a *
* message is copied to the network special message area (N+0) *
* and processing branches to SIGNALSP. *
**
IST486I LABEL

SETSW NSW1=ON
8 IF TEXT=(ACTIV),LOC=U+100,WHEN=IMMED,SCAN=50,

THEN=B-NOSMSG
DATASAVE AREA=N+0,
TEXT=(+$RECALL,U+60,16$ $RECALL,U+80,14$ $RECALL,U+10,8$)
BRANCH LABEL=SIGNALSP

**
* The following section is processed when immediate IFs 7 or 8 *
* detected VTAM message IST088I or IST453I was returned from the *
* D NET command. A message is copied to the network special message *
* area (N+0) and processing branches to SIGNALSP. *
**
IST088I LABEL
IST453I LABEL

SETSW NSW1=ON
DATASAVE AREA=N+0,
TEXT=(-$RECALL,U+60,16$ NOT ACTIVATED - $RECALL,U+10,8$)
BRANCH LABEL=SIGNALSP

**
* The following section clears the VTAM message save area (U+100) *
* and signals the EVENT SPECMSG (which is processed by ACTRLNET). *
**
SIGNALSP LABEL

DATASAVE AREA=U+100,TEXT=(’00’)
DATASAVE AREA=U+101,TEXT=($RECALL,U+100,99$)
EVENT SIGNAL=SPECMSG

**
* The following section issues the D NET command to display the *
* status of the resource whose name is currently stored in U+40. *
* First the VTAM message area is cleared, a TAB is processed to *
* return the cursor to the beginning of the NetView input area, *
* and EREOF is processed to clear the input field, and the D NET *
* command is entered with the resource name being that located in *
* U+40. *
**
NOSMSG LABEL

DATASAVE AREA=U+100,TEXT=(’00’)
DATASAVE AREA=U+101,TEXT=($RECALL,U+100,99$)
TAB
EREOF
TEXT (D NET,NONE,ID=$RECALL,U+40,16$)
ENTER
STOP
RETURN

**
* DATASAV1 is executed on the THEN leg of IFs 0, 1, and 2. This *
* will occur whenever VTAM message IST486I, IST088I, or IST453I *
* is detected. DATASAV1 saves the entire VTAM message into U=100. *
**
DATASAV1 LABEL

DATASAVE AREA=U+100,LENG=065,LOC=*
RETURN

Chapter 25. AVMON example 337

**
* DATASAV2 is executed on the THEN leg of IF 3. This will occur *
* when the pre-VTAM 3.2 message IST486I with the STATUS= of the *
* named resource is detected in the inbound datastream. WSim saves *
* away the status of the named resource at location U+80. *
**
DATASAV2 LABEL

DATASAVE AREA=U+80,LENG=014,LOC=*
RETURN

**
* DATASAV3 is executed on the THEN leg of IF 4. This will occur *
* when the VTAM 3.2 message IST486I with the current state of the *
* named resource is detected in the inbound datastream. WSim saves *
* away the current state of the resource at location U+80. *
**
DATASAV3 LABEL

DATASAVE AREA=U+80,LENG=013,LOC=*
RETURN

**
* LNETVMSG issues the SPECMSG message to the NetView operator when- *
* ever EVENT SNETVMSG is signalled. Change the operator ID to match *
* the local system configuration. *
* *
* The special message queue in savearea 1 is reduced, one message at *
* a time, until the counter DC1=0. This means no messages are left. *
**
LNETVMSG LABEL

TAB
EREOF
TEXT (MSG OPER,$RECALL,1+0,60$)

* ==== <--------------------------------------CHANGE
ENTER
DELAY TIME=F5
DATASAVE AREA=1,TEXT=($RECALL,1+60,6000$)
SET DC1=-1
IF LOC=DC1,TEXT=0,ELSE=B-LNETVMSG,WHEN=IMMED
ON EVENT=NETVMSGL,THEN=C-LNETVMSG
RETURN

**
* SNETVMSG is executed when NETVMSG is signalled. This concatenates *
* new messages to the end of existing messages in the message queue *
* (savearea 1). The message area N+100 is cleared, DC1 is *
* incremented to reflect the new message in the queue, the event *
* NETVMSGL is signalled (to begin the process of actually sending *
* the messages to NetView), the ON condition is reset, and processing*
* returns. *
**
SNETVMSG DATASAVE AREA=1,TEXT=($RECALL,1$$RECALL,N+100,60$)

DATASAVE AREA=N+100,TEXT=(’00’)
DATASAVE AREA=N+101,TEXT=($RECALL,N+100,99$)
SET DC1=+1
EVENT SIGNAL=NETVMSGL
ON EVENT=NETVMSG,THEN=E-SNETVMSG
RETURN
ENDTXT

AMONTSO message generation deck
AMONTSO MSGTXT

* THIS MESSAGE DECK IS USED BY THE LU NAMED TSOCTRL AND ACTS AS A *
* CONTROLLER OF THE 3 TSO TERMINALS THAT CHECK THE AVAILABILITY *
* OF THE TSO SYSTEM. *
* *
* COMMENT SECTIONS IN THIS DECK ARE BOXED WITH ASTERISKS (*). *

338 Creating Workload Simulator Scripts

* *
* THE FOLLOWING SWITCHES, COUNTERS, AND AREAS ARE REFERENCED IN THIS *
* MESSAGE DECK: *
* *
* SWITCHES: NSW2 (SET BY ONE OF THE TSO TERMINALS, IT *
* INDICATES THE STATE OF THE TSO SYSTEM) *
* *
* COUNTERS: NC3 (COUNTS MINUTES OF AVAILABILITY FOR TSO) *
* DSEQ (TRACKS WHICH TSO TERMINAL IS ACTIVE) *
* *
* AREAS: N+0 (NETWORK SPECIAL MESSAGE AREA, LENGTH 60) *
* U+10 (REFORMATTED TIME OF DAY, LENGTH 8) *
* *
* MESSAGE GENERATION STATEMENTS WHICH MAY NEED CHANGING TO MATCH YOUR *
* REQUIREMENTS ARE MARKED WITH THE WORD "CHANGE". *

* AN INITIAL WAIT OF ONE SECOND IS PROVIDED TO ALLOW NETCTRL TO *
* QUIESCE ALL LU’S AND ESTABLISH SYNCHRONIZATION. DSEQ IS *
* INCREMENTED TO TRACK WHICH TSO TERMINAL FROM THE POOL IS *
* CURRENTLY ACTIVE. THE FIRST TSO TERMINAL IS RELEASED FROM ITS *
* QUIESCED STATE. *

WAIT TIME=1
SET DSEQ=1
OPCMND (A TS01,RELEASE)

* TSOCTRL GOES INTO A 3 MINUTE WAIT WHILE THE TSO TERMINAL UNDER *
* ITS CONTROL CONTINUES TO MONITOR THE STATUS OF TSO. AFTER 3 *
* MINUTES HAVE EXPIRED THE TIME OF DAY IS REFORMATTED (AFORTIME) AND *
* A LOGIC TEST ON NSW2 IS EVALUATED. IF NSW2 IS ON, THEN PROCESSING *
* WILL BRANCH TO LABEL "OK", INDICATING THE TSO TERMINAL IS SATIS- *
* FIED WITH THE RESPONSE IT RECEIVED FROM TSO *

CHECK LABEL

WAIT TIME=180
CHECK1 LABEL

CALL NAME=AFORTIME
IF LOC=NSW2,WHEN=IMMED,THEN=B-OK,ELSE=CONT

* PROCESSING OF THIS SECTION INDICATES NSW1 WAS OFF FOR THE PREVIOUS *
* IF. TWO MORE TESTS OF NSW2 WILL OCCUR, EACH ONE MINUTE APART. IF *
* AFTER 2 MINUTES NSW2 IS NOT TURNED ON, THEN THE TSO TERMINAL IS *
* ASSUMED INACTIVE AND STEPS ARE TAKEN TO ATTEMPT TO RECOVER THE *
* TERMINAL. *

DATASAVE AREA=N+0,
TEXT=(-TSO-$CNTR,DSEQ,2$ IS NOT RESPONDING - $RECALL,U+10,8$)
EVENT SIGNAL=SPECMSG
WAIT TIME=60
IF LOC=NSW2,WHEN=IMMED,THEN=B-NOWOK,ELSE=CONT
WAIT TIME=60
IF LOC=NSW2,WHEN=IMMED,THEN=B-NOWOK
BRANCH LABEL=ATTENT

* PREVIOUS TESTS OF NSW2 WERE MET, INDICATING TSO IS OPERATIONAL. *
* IF NSW2 WAS ON AFTER THE 2ND MINUTE THEN "NOWOK" IS PROCESSED: A *
* SPECIAL MESSAGE IS WRITTEN TO INDICATE THE TSO TERMINAL IS AGAIN *
* RESPONDING. IF NSW2 WAS ON ALL ALONG, THEN "OK" IS PROCESSED: NSW2 *
* IS TURNED OFF, AND THE TSO AVAILABILITY COUNTER IS INCREMENTED BY *
* 3 MINUTES. *

NOWOK LABEL

CALL NAME=AFORTIME
DATASAVE AREA=N+0,
TEXT=(+TSO-$CNTR,DSEQ,2$ IS RESPONDING AGAIN - $RECALL,U+10,8$)
EVENT SIGNAL=SPECMSG

Chapter 25. AVMON example 339

OK LABEL
SETSW NSW2=OFF
SET NC3=+3
BRANCH LABEL=CHECK

* NSW2 WAS NEVER DETERMINED TO BE ON, SO THE TSO TERMINAL IS ASSUMED *
* TO BE INACTIVE AT THIS POINT. IT WILL BE QUIESCED AND THE NEXT LU *
* IN THE TERMINAL POOL IS RELEASED FROM ITS QUIESCED STATE. THIS *
* IS CONTROLLED ACCORDING TO THE VALUE OF DSEQ, WHICH WAS TRACKING *
* WHICH TSO TERMINAL WAS CURRENTLY IN OPERATION. IF NO MORE LU’S *
* ARE AVAILABLE FROM THE POOL, THEN PROCESSING BRANCHES TO "NOMORE". *

REINIT LABEL

DEACT ONEVENTS=(TSOREC)
IF LOC=DSEQ,TEXT=1,WHEN=IMMED,ELSE=B-N1
OPCMND (A TS01,QUIESCE)
OPCMND (A TS02,RELEASE)
BRANCH LABEL=ENDUP

N1 LABEL
IF LOC=DSEQ,TEXT=2,WHEN=IMMED,ELSE=B-NOMORE
OPCMND (A TS02,QUIESCE)
OPCMND (A TS03,RELEASE)
BRANCH LABEL=ENDUP

* THIS SECTION PROMPTS THE TSO TERMINAL TO ISSUE AN "ATTN" TO TRY TO *
* RECOVER. A 60 SECOND WAIT IS IMPOSED TO SEE IF THIS WORKED. IF *
* NOT, THE PROCESSING BRANCHES TO REINIT. *

ATTENT LABEL

EVENT SIGNAL=ATTENT
ON EVENT=TSOREC,THEN=B-NOWOK
WAIT TIME=60
BRANCH LABEL=REINIT

* THE NEXT TSO TERMINAL HAS BEEN RELEASED AND THE VALUE OF DSEQ IS *
* INCREMENTED BY ONE. TSOCTRL WAITS FOR 180 SECONDS AND PROCESSING *
* BRANCHES TO "CHECK1". *

ENDUP LABEL

SET DSEQ=+1
WAIT TIME=180
BRANCH LABEL=CHECK1

* THE TSO TERMINAL POOL HAS BEEN EXHAUSTED. EVENT PUTAV IS SIGNALLED *
* TO WRITE THE AVAILABILITY SUMMARY REPORT. A SPECIAL MESSAGE IS *
* WRITTEN TO THE NETWORK SPECIAL MESSAGE AREA AND THEN EVENT SPECMSG *
* IS SIGNALLED TO WRITE IT OUT THE THE OPERATOR SCREEN AND TO THE *
* LOG. THEN THIS WSim NETWORK (AVMON) IS CANCELLED, INITIALIZED, *
* AND STARTED VIA THE OPCMND’S. *

NOMORE LABEL

CALL NAME=AFORTIME
EVENT SIGNAL=PUTAV
DATASAVE AREA=N+0,
TEXT=(*** TSO POOL EXHAUSTED, REINIT AVMON - $RECALL,U+10,8$)
EVENT SIGNAL=SPECMSG
CALL NAME=AFORTIME

0 IF TEXT=(17:30),LOC=U+10,WHEN=IMMED,COND=GE,THEN=B-NOREST
* ===== <--------------------------------------CHANGE

DATASAVE AREA=N+0,
TEXT=(*** RESTART OF AVMON BY $LUID$ - $RECALL,U+10,8$)
EVENT SIGNAL=SPECMSG
OPCMND (C AVMON)
OPCMND (I AVMON)
OPCMND (S AVMON)
BRANCH LABEL=WAIT

340 Creating Workload Simulator Scripts

NOREST LABEL
DATASAVE AREA=N+0,
TEXT=(*** NO RESTART OF AVMON AT THIS TIME - $RECALL,U+10,8$)
EVENT SIGNAL=SPECMSG

WAIT WAIT
BRANCH LABEL=WAIT
ENDTXT

ALOGTSO message generation deck
ALOGTSO MSGTXT

* The following deck is used to logon to TSO. The userid’s to be *
* used are assumed to be WSIM01, WSIM02, and WSIM03. *
* *
* Comment sections in this deck are boxed with asterisks (*). *
* *
* The following switches, counters, and areas are referenced in this *
* message deck: *
* *
* Switches: NSW2 (tells TSOCTRL the terminal is still *
* active. Used in this deck just in case *
* logon is unusually time consuming) *
* *
* Counters: (there are no counters referenced) *
* *
* Areas: U+0 (userid work area, length 6) *
* *
* Message generation statements which may need changing to match your *
* requirements are marked with the word "CHANGE". *

* The first section composes the TSO userid by placing the last two *
* digits of the LU name on the end of "WSIM", thus the TSO userid’s *
* are WSIM01, WSIM02, and WSIM03. *

WAIT TIME=10
DATASAVE AREA=U+2,TEXT=($ID,4$)
DATASAVE AREA=U+0,TEXT=(WSIM)

* The following IF checks for the end of page indicator (***) and if *
* seen, then CLEAR is called to press enter to wrap the page. *

0 IF TEXT=(’08’***),LOC=C-5,THEN=C-CLEAR,

STATUS=HOLD,DELAY=CANCEL

* The CMND is processed to establish the session between the status *
* LU and TSO. Change the MODE and RESOURCE to match local system *
* requirements. *

CMND COMMAND=INIT,DATA=($RECALL,U+0,6$),
MODE=D6327802,RESOURCE=TSO

* ======== === <----------------------CHANGE

* The next section checks for an incoming message with the text *
* "PASSWORD". When it arrives, processing branches to PSWGO. For *
* all other incoming messages (specifically incoming BIND images, *
* etc.), processing holds up at WAIT1. The BRANCH LABEL=WAIT1 is *
* included because an incoming bind will reset any active waits. *

CHKPSWD LABEL
1 IF LOC=B+0,SCAN=YES,TEXT=(PASSWORD),THEN=B-PSWGO,

STATUS=HOLD,DELAY=CANCEL
WAIT1 WAIT

BRANCH LABEL=WAIT1

Chapter 25. AVMON example 341

* The following section enters the userid password. The password is *
* constructed using the character string provided at "yourpw" and the *
* last two digits of the userid. Thus if the letters WSIM were *
* placed at "yourpw", WSIM02’s password would be "WSIM02". *
* *
* NOTE: if the installation of TSO about to be logged onto auto- *
* matically enters SESSION MANAGER MODE, have your systems programmer *
* provide a TSO PROCEDURE that will turn SESSION MANAGER OFF. *

PSWGO LABEL

TEXT (WSIM$RECALL,U+4,2$)
* ====== <---CHANGE

ENTER
SETSW NSW1=ON

* The following IF statements determine whether the logon was *
* successful (READY), or unsuccessful (LOGON REJECTED), and *
* processing will branch accordingly. If a message arrives that *
* contains neither of the two, then the LU logging on will continue *
* to wait at WAIT2. *

1 IF LOC=B+0,SCAN=YES,TEXT=(READY),THEN=B-ENDLOG,

STATUS=HOLD,DELAY=CANCEL
2 IF LOC=B+0,SCAN=YES,TEXT=(LOGON REJECTED,),THEN=B-RECON,

STATUS=HOLD,DELAY=CANCEL
WAIT2 WAIT

BRANCH LABEL=WAIT2

* If the logon was rejected then an attempt to reconnect will be *
* processed. Processing branches back to CHKPSWD. *

RECON TEXT (LOGON $RECALL,U+0,6$ RECONNECT)

ENTER
BRANCH LABEL=CHKPSWD

* In the event a page end is detected (***), then IF 0 calls the *
* following segment to clear the screen. *

CLEAR LABEL

CLEAR
RETURN

* If a READY was received then processing branches to ENDLOG, which *
* reformats the time of day (AFORTIME) and writes a message out to *
* the operator screen and log indicating that TSO is responding. *

ENDLOG LABEL

CALL NAME=AFORTIME
WTO (+TSO IS NOW RESPONDING - $RECALL,U+10,8$)
LOG (+TSO IS NOW RESPONDING - $RECALL,U+10,8$)
ENDTXT

ACHKTSO message generation deck
ACHKTSO MSGTXT

* THIS MESSAGE DECK IS USED BY THE TSO TERMINALS TO MONITOR THE *
* AVAILABILITY OF THE TSO SYSTEM. *
* *
* COMMENT SECTIONS IN THIS DECK ARE BOXED WITH ASTERISKS (*). *
* *
* THE FOLLOWING SWITCHES, COUNTERS, AND AREAS ARE REFERENCED IN THIS *
* MESSAGE DECK: *

342 Creating Workload Simulator Scripts

* *
* SWITCHES: NSW2 (SET BY THE LU EXECUTING THIS DECK, IT *
* INDICATES THE STATUS OF THE TSO SYSTEM) *
* SW1 (SET WHEN "READY" IS RETURNED FROM TSO) *
* SW2 (SET WHEN RESPONSE TIME WAS GREATER THAN *
* DEFINED SERVICE LEVEL COMMITMENT) *
* *
* COUNTERS: (THERE ARE NO COUNTERS USED IN THIS DECK) *
* *
* AREAS: N+0 (NETWORK SPECIAL MESSAGE AREA, LENGTH 60) *
* U+10 (REFORMATTED TIME OF DAY, LENGTH 8) *
* *
* MESSAGE GENERATION STATEMENTS WHICH MAY NEED CHANGING TO MATCH YOUR *
* REQUIREMENTS ARE MARKED WITH THE WORD "CHANGE". *

* THE FOLLOWING ON CONDITION IS SET TO PREPARE THE LU IN THE EVENT *
* IT HANGS. ATTENT WILL CAUSE AN ATTN KEY PROCESSING TO OCCUR. *

ON EVENT=ATTENT,THEN=B-ATTNKEY

* THE FOLLOWING IF WILL CLEAR THE SCREEN WHENEVER THE INCOMING *
* IS "***". *

0 IF TEXT=(’08’***),LOC=C-5,THEN=C-CLEAR,

STATUS=HOLD,DELAY=CANCEL

* THE FOLLOWING SECTION MEASURES THE RESPONSE TIME OF THE TSO SYSTEM *
* TO AN EXEC STATEMENT THAT INVOKES THE CLIST "TIMECHK". THE CLIST *
* IS SIMPLY: *
* PROC 0 COUNT(5) *
* DO WHILE &COUNT > 0 *
* SET COUNT = &COUNT-1 *
* END *
* TIME *
* *
* ENSURE THIS CLIST IS IN A DATASET CORRESPONDING TO THE NAME GIVEN *
* ON THE TEXT STATEMENT. *
* *
* PROCESSING OF THIS DECK IS AS FOLLOWS: *
* *
* - NSW2 IS SET ON TO TELL TSOCTLR THAT THE TSO TERMINAL IS *
* STILL ACTIVE. *
* - ALL THE DEVICE SWITCHES ARE SET OFF BY SETSW SW=OFF. THIS *
* EFFECTS ONLY THE SWITCHES FOR THE TSO TERMINALS, NOT TSOCTRL. *
* - EVENT TIMELAPT IS RESET. *
* - EVENT TIMELAPT IS POSTED WITH TIME=5. THE VALUE FOR TIME IS *
* MAXIMUM RESPONSE TIME ALLOWED ACCORDING TO THE LOCAL SERVICE *
* COMMITMENT. *
* - IF 1 SETS SW1 IF THE MESSAGE RETURNED IS THE EXPECTED READY. *
* - IF 2 SETS SW2 IF EVENT=TIMELAPT HAS BEEN POSTED. THIS WOULD *
* MEAN THE MAXIMUM RESPONSE TIME EXPIRED BEFORE THE RESPONSE *
* WAS RECEIVED. *
* - IF 3 EXECUTES BADMSG IF BOTH SW1 (READY RECEIVED) AND *
* SW2 (TIMELAPT POSTED: RESPONSE TOO SLOW) *
* - IF 4 BRANCHES BACK TO "REPEAT" IF THE SW1 IS ON, INDICATING *
* THE "READY" WAS RECEIVED WITHIN THE TIME LIMIT IMPOSED. *
* - IF 5 GUARDS AGAINST THE RARE OCCURANCE OF RECEIVING THE END *
* PAGE "***" AFTER THE "READY". *

REPEAT LABEL

TEXT (EXEC ’’WSIM.AVMON.CLIST((TIMECHK))’’)
* =========================== <---------------CHANGE

ENTER
SETSW NSW2=ON
SETSW SW=OFF
CANCEL EVENTTAG=TIMELAPT

Chapter 25. AVMON example 343

EVENT RESET=TIMELAPT
EVENT POST=TIMELAPT,TIME=5

* = <-----------------------------CHANGE
1 IF TEXT=(READY),LOC=RU+0,SCAN=YES,THEN=SW1(ON)
2 IF EVENT=TIMELAPT,THEN=SW2(ON)
3 IF LOC=SW1&SW2,THEN=E-BADMSG
4 IF LOC=SW1,THEN=B-REPEAT
WAIT WAIT
5 IF LOC=SW1,WHEN=IMMED,THEN=B-REPEAT

BRANCH LABEL=WAIT

* "BADMSG" IS EXECUTED WHEN THE RESPONSE TIME WAS TOO SLOW. IT IS *
* EXECUTED ON THE "THEN" LEG OF IF 3. *

BADMSG LABEL

DATASAVE AREA=U+12,TEXT=($TOD,6$)
DATASAVE AREA=U+10,
TEXT=($RECALL,U+12,2$:$RECALL,U+14,2$:$RECALL,U+16,2$)
DATASAVE AREA=N+0,
TEXT=(-TSO HAS BAD RESPONSE TIME AT $RECALL,U+10,8$)
EVENT SIGNAL=SPECMSG
SETSW SW2=OFF
EVENT RESET=TIMELAPT
RETURN

* WHEN PROMPTED TO PERFORM THESE ACTIONS, THE LU SENDS THE ATTN KEY *
* (COMMAND=SIGNAL). IT THEN LOOKS FOR THE "READY" TO BE RETURNED. *
* IF IT IS, THEN THE TERMINAL HAS RECOVERED AND THE TSO CONTROLLING *
* LU IS ALERTED OF THIS VIA TSOREC. *

ATTNKEY CMND COMMAND=SIGNAL,SENSE=’00010000’
6 IF TEXT=(READY),LOC=RU+0,SCAN=YES,THEN=CONT,STATUS=HOLD

DELAY TIME=F1
WAIT
DEACT IFS=(6)
EVENT SIGNAL=TSOREC
ON EVENT=ATTENT,THEN=B-ATTNKEY
BRANCH LABEL=REPEAT
RETURN

* "CLEAR" IS CALLED WHENEVER THE END OF PAGE INDICATOR ("***") IS *
* DETECTED BY IF 0. *

CLEAR LABEL

CLEAR
RETURN
ENDTXT

AVMON STL procedures
The following examples are STL procedures for the sample AVMON configuration.
Refer to WSim User's Guide for the location of these data sets on the WSim
distribution tape.
/*---*/
/* AVMON Overview */
/* */
/* This version of AVMON is a collection of STL procedures that */
/* may be used to monitor the performance and status of your */
/* network resources. AVMON does this by having simulated */
/* terminals log onto the resources and check the status on a */
/* periodic basis. For example, AVMON as it appears here logs */
/* onto TSO and NetView; the terminals in session with TSO check */
/* the response time of TSO, the terminals in session with */

344 Creating Workload Simulator Scripts

/* NetView issue D NET,ID=resource_name commands and check the */
/* status that is returned. */
/* */

/* AVMON works on three levels: */
/* */
/* 1) Monitoring LUs go into session with the systems and perform */
/* their checking functions. This example of AVMON checks */
/* only TSO and NetView, but you may modify AVMON to monitor */
/* more systems if you’d like. Only one LU is in session with */
/* an application at any given time, but AVMON provides a pool */
/* of three LUs for each application. If an LU hangs, */
/* for whatever reason, AVMON will detect this and start the */
/* next LU in the pool. If a pool is exhausted, AVMON will */
/* detect this as well and refresh the pools by restarting */
/* the whole network. */
/* */
/* 2) The system pools are controlled by "controlling LUs", one */
/* for every system being monitored. These LUs do not go into */
/* session with anything, they simply check the condition of */
/* the monitoring LUs and take action when problems arise. */
/* */
/* 3) A network-wide controlling LU keeps watch on the entire */
/* AVMON network, managing the activities of the simulation */
/* at this high level. */
/* */

/* It is also important to note that the information logged to the */
/* WSim log data set is essentially the same between the two */
/* versions of AVMON. Therefore, this manuals instructions on how to */
/* run ITPLL and ITPRESP are applicable in any case. */
/* */
/* This STL program is comprised of several sections: */
/* */
/* 1) A constants declaration section. This will allow you to */
/* configure AVMON to your requirements without having to */
/* make modifications to the STL code itself. An explanation */
/* of each constant is provided in comment blocks in the */
/* constants sections. */
/* */
/* 2) A variable declaration section. This allows the STL */
/* translator program to know how it should allocate the */
/* variables named in the program. These should not be */
/* modified unless you have a solid understanding of the STL */
/* program, the STL language, and the STL Translator. */
/* */
/* 3) A table definition section. Many aspects of AVMON will */
/* differ from user to user. The STL version of AVMON puts */
/* as many of these user-specific items in tables for easier */
/* modification. These tables are discussed in comment blocks */
/* in the table section. */
/* */
/* 4) Individual STL procedures. These procedures should not */
/* require modification unless you’re tailoring your AVMON to */
/* something special. Take the time to understand the overall */
/* flow of AVMON before you make modification. Slight changes */
/* can have drastic results. */
/* */

/* Please take note: */
/* */
/* */
/* o This version of AVMON works in a manner different from the */
/* version written in the WSim scripting language. Do not */
/* attempt to mix any portion of this program with the */
/* original AVMON. */
/* */
/* o If you make any modifications to this STL program, be sure */
/* to translate it before you use it in your WSim simulations. */

Chapter 25. AVMON example 345

/* Changes made to STL must be translated before they will be */
/* seen in your simulation run. */
/* */
/* o If you choose to write some additional procedures for this */
/* program, be sure to include them in this file before you */
/* translate them using the STL Translator. Separate trans- */
/* lations may result in WSim resources, such as counters or */
/* save areas, being used for different reasons. This could */
/* easily upset the operation of AVMON. */
/* */

/* WSim network configuration requirements: */
/* */
/* The network configuration that you supply to run AVMON should */
/* be patterned after the following example. This example is a */
/* VTAMAPPL configuration, but you may configure a domain */
/* simulation if you’d prefer. The name on the NTWRK statement */
/* MUST be "AVMON". */
/* */
/* */

/* AVMON NTWRK HEAD=’AVAILABILITY MONITOR’, */
/* *---* */
/* * The NTWRK statement operands follow: * */
/* *---* */
/* DELAY=F1, */
/* UTI=100, */
/* INIT=SEC, */
/* MSGTRACE=NO, <--- Change if desired */
/* STLTRACE=NO, <--- Change if desired */
/* REPORT=NONE, */
/* OPTIONS=(NORRLOG), */
/* BUFSIZE=3000 */
/* *---* */
/* * The INCLUDE and PATH statements are next: * */
/* *---* */
/* INCLUDE SAVEMSG,NETVMSG,REFTIME,AVSTATS,SPECMSG, */
/* REINIT,NOWOK,CLEARIT,ATTNKEY,PARSPROC,TIMER */
/* 1 PATH ACHKNETV */
/* 2 PATH ACHKTSO */

/* *---* */
/* * The network controller LU is defined in this manner. The * */
/* * name on the LU must be "NETCTRL". The name of the VTAMAPPL * */
/* * may be any valid VTAM APPL name and must be defined to * */
/* * VTAM and activated before running AVMON. * */
/* *---* */
/* APPLNET VTAMAPPL */
/* NETCTRL LU LUTYPE=LU0, */
/* FRSTTXT=ACTRLNET */

/* *---* */
/* * The NetView controller LU. The name on the LU must be * */
/* * "NETVCTRL". The name of the VTAMAPPL may be any valid VTAM * */
/* * APPL name and must be defined to VTAM and activated before * */
/* * running AVMON. * */
/* *---* */
/* APPLNC VTAMAPPL */
/* NETVCTRL LU LUTYPE=LU0, */
/* FRSTTXT=AMONNETV */

/* *---* */
/* * The NetView monitoring LU pool follows. The LU names you * */
/* * use must match the NetView operator IDs WSim will log on to.* */
/* * These names must also be provided in the table "netvtble" * */
/* * along with the associated passwords (see "netvtble" for * */
/* * instructions). The VTAMAPPL names may be of your choosing, * */
/* * and should be defined to VTAM and activated prior to running* */
/* * AVMON. * */
/* *---* */

346 Creating Workload Simulator Scripts

/* APPLN1 VTAMAPPL */
/* NVOPER1 LU LUTYPE=LU2,FRSTTXT=ALOGNETV,PATH=(1), */
/* MAXSESS=(0,1),DISPLAY=(24,80) */
/* APPLN2 VTAMAPPL */
/* NVOPER2 LU LUTYPE=LU2,FRSTTXT=ALOGNETV,PATH=(1), */
/* MAXSESS=(0,1),DISPLAY=(24,80) */
/* APPLN3 VTAMAPPL */
/* NVOPER3 LU LUTYPE=LU2,FRSTTXT=ALOGNETV,PATH=(1), */
/* MAXSESS=(0,1),DISPLAY=(24,80) */

/* *---* */
/* * The TSO controller LU. The name on the LU must be * */
/* * "TSOCTRL". The name of the VTAMAPPL may be any valid VTAM * */
/* * APPL name and must be defined to VTAM and activated before * */
/* * running AVMON. * */
/* *---* */
/* APPLTC VTAMAPPL */
/* TSOCTRL LU LUTYPE=LU0, */
/* FRSTTXT=AMONTSO */

/* *---* */
/* * The TSO monitoring LU pool follows. The LU names you * */
/* * use must match the TSO IDs names WSim will log on to. * */
/* * These names must also be provided in the table "tsotable" * */
/* * along with the associated passwords (see "tsotable" for * */
/* * instructions). The VTAMAPPL names may be of your choosing, * */
/* * and should be defined to VTAM and activate prior to running * */
/* * AVMON. * */
/* *---* */
/* APPLT1 VTAMAPPL */
/* TSOID1 LU LUTYPE=LU2,FRSTTXT=ALOGTSO,PATH=(2), */
/* MAXSESS=(0,1),DISPLAY=(24,80) */
/* APPLT2 VTAMAPPL */
/* TSOID2 LU LUTYPE=LU2,FRSTTXT=ALOGTSO,PATH=(2), */
/* MAXSESS=(0,1),DISPLAY=(24,80) */
/* APPLT3 VTAMAPPL */
/* TSOID3 LU LUTYPE=LU2,FRSTTXT=ALOGTSO,PATH=(2), */
/* MAXSESS=(0,1),DISPLAY=(24,80) */
/* */
/*---*/

/*---*/
/* The following STL statement, along with an "STLTRACE=YES" in */
/* the network configuration, will place STL trace records into your */
/* log dataset. This should be done for debugging purposes only: */
/* when you put AVMON into production, you should NOT log STL trace */
/* records. Coding "STLTRACE=NO" will inhibit the logging of */
/* STL trace records. You need not change the "@program" statement. */
/*---*/

Constant declarations
@program=avmontrc
/*---*/
/* Constants in AVMON STL dictate how AVMON will operate. Between */
/* these constants and the table definition section, AVMON can be */
/* completely configured. No modification of the STL procedures is */
/* necessary. */
/* */
/* Constant values are either integer or character in nature. AVMON */
/* does not use any binary, or bit, constants. Be sure to express */
/* integer constants as number values, and enclose string constants */
/* in single quotes. */
/*---*/

/*------------------------*/
constant achktso_suspend_time 180 /* Time (in seconds) */

/* between TSO terminal */
/* checks of TSO system. */
/*------------------------*/

Chapter 25. AVMON example 347

/*------------------------*/
constant max_response_time 3 /* Maximum TSO response */

/* time allowed (in */
/* seconds). */
/*------------------------*/

/*------------------------*/
constant message_log_device ’DISK’ /* Method of message log- */

/* ging. Enter either */
/* DISK or TAPE. */
/*------------------------*/

/*------------------------*/
constant netview_logon_appl ’CNM01’ /* APPL to be used when */

/* logging on to NetView. */
/*------------------------*/

/*------------------------*/
constant netview_mode_table ’D4A32782’ /* LOGMODE table to be */

/* used when logging on */
/* to NetView. */
/*------------------------*/

/*------------------------*/
constant netview_msg_operator ’OPER5’ /* NetView operator where */

/* AVMON special messages */
/* should be sent. */
/*------------------------*/

/*------------------------*/
constant reinit_stop_time ’17:30’ /* Time beyond which no */

/* ’reinit’ of AVMON will */
/* be performed. */
/* (00:01 to 24:00) */
/*------------------------*/

/*------------------------*/
constant resource_loop 180 /* Total time for NetView */

/* monitoring LU to cycle */
/* through all the re- */
/* sources in RESTBLE */
/* (in seconds). */
/*------------------------*/

/*------------------------*/
constant start_time ’08:00’ /* Time at which you wish */

/* AVMON to begin moni- */
/* toring. Must be in */
/* the ’HH:MM’ format. */
/* (00:01 to 24:00) */
/*------------------------*/

/*------------------------*/
constant stats_msg_cycle_time 60 /* Time (in minutes) */

/* between availability */
/* status report. */
/*------------------------*/

/*------------------------*/
constant stop_time ’18:00’ /* Time at which you wish */

/* AVMON to stop monitor- */
/* ing. Must be in the */
/* ’HH:MM’ format. */
/* (00:01 to 24:00) */
/*------------------------*/

348 Creating Workload Simulator Scripts

/*------------------------*/
constant tso_logon_appl ’TSO’ /* APPL to be used when */

/* logging on to TSO. */
/*------------------------*/

/*------------------------*/
constant tso_mode_table ’D4A32782’ /* LOGMODE table to be */

/* used when logging on */
/* to TSO. */
/*------------------------*/

Variable declarations
/*---*/
/* The variable declaration section is used to tell STL how to */
/* allocate the resources named by STL variables. For example, */
/* if you want a counter to be shared across all resources, you */
/* would declare the integer variable as "shared" so that STL */
/* would translate the variable into a WSim network counter. */
/* */
/* These declarations should NOT be modified. Their present */
/* allocation is critical to the operation of AVMON. */
/*---*/

Integer variables
/*------------------------*/

integer unshared status_offset /* Used when determining */
/* the offset into the */
/* VTAM IST486I message */
/* the keyword "STATUS=" */
/* (VTAM 3.1.1 or before).*/
/*------------------------*/

/*------------------------*/
integer unshared state_offset /* Used when determining */

/* the offset into the */
/* VTAM IST486I message */
/* the keyword "STATE=" */
/* (VTAM 3.2 and after). */
/*------------------------*/

/*------------------------*/
integer unshared table_index /* Used to control the */

/* selection of the */
/* resource name from */
/* RESTBLE. */
/*------------------------*/

/*------------------------*/
integer unshared stats_msg_counter /* Used to track the time */

/* since the last print- */
/* ing of the status */
/* report. */
/*------------------------*/

/*------------------------*/
integer unshared terminal_suspend_time /* Passed to procedure */

/* NOWOK to control */
/* suspend after special */
/* message. */
/*------------------------*/

/*------------------------*/
integer unshared tso_recovery_wait /* DO loop control value */

/* used when checking to */
/* see if TSO recovered */

Chapter 25. AVMON example 349

/* after ATTENTION used. */
/*------------------------*/

/*------------------------*/
integer unshared total_elapsed_seconds /* Total seconds between */

/* two time stamps passed */
/* to "timer" procedure. */
/*------------------------*/

/*------------------------*/
integer unshared start_hr /* Hour value of time of */

/* day when TSO message */
/* transmitted. */
/*------------------------*/

/*------------------------*/
integer unshared start_min /* Minute value of time */

/* of day when TSO message*/
/* transmitted. */
/*------------------------*/

/*------------------------*/
integer unshared start_sec /* Second value of time */

/* day when TSO message */
/* transmitted. */
/*------------------------*/

/*------------------------*/
integer unshared stop_hr /* Hour value of time of */

/* day when READY received*/
/* by TSO terminal. */
/*------------------------*/

/*------------------------*/
integer unshared stop_min /* Minute value of time of*/

/* day when READY received*/
/* by TSO terminal. */
/*------------------------*/

/*------------------------*/
integer unshared stop_sec /* Second value of time of*/

/* day when READY received*/
/* by TSO terminal. */
/*------------------------*/

/*------------------------*/
integer unshared line_offset /* Used in procedure */

/* SAVEMSG to determine */
/* the offset into the */
/* screen of the NetView */
/* separator line (----). */
/*------------------------*/

/*------------------------*/
integer shared overall_time /* Used to track the */

/* total time AVMON has */
/* been in operation. */
/*------------------------*/

/*------------------------*/
integer shared netview_pool_lu_number /* Used to indicate which */

/* LU from the NetView */
/* pool is currently */
/* active. */
/*------------------------*/

/*------------------------*/

350 Creating Workload Simulator Scripts

integer shared netview_availability /* Used to track the */
/* total time the NetView */
/* LUs have been active. */
/*------------------------*/

/*------------------------*/
integer shared tso_pool_lu_number /* Used to indicate which */

/* LU from the TSO pool */
/* is currently active. */
/*------------------------*/

/*------------------------*/
integer shared tso_availability /* Used to track the */

/* total time the TSO */
/* LUs have been active. */
/*------------------------*/

String variables
/*------------------------*/

string unshared resource_status /* Used to store the */
/* status of the resource */
/* after the NetView LU */
/* has issued the D NET */
/* command. */
/*------------------------*/

/*------------------------*/
string unshared temp /* Used as a temporary */

/* variable for special */
/* message processing. */
/*------------------------*/

/*------------------------*/
string unshared termtype /* Used by procedure */

/* NOWOK to specify what */
/* terminal type has */
/* regained activity. */
/*------------------------*/

/*------------------------*/
string unshared start /* Used by procedure */

/* TIMER to calculate */
/* TSO response time. */
/*------------------------*/

/*------------------------*/
string unshared stop /* Used by procedure */

/* TIMER to calculate */
/* TSO response time. */
/*------------------------*/

/*------------------------*/
string unshared token_string /* UTBL entry passed to */

/* PARSPROC procedure to */
/* parse out id and pass- */
/* word. */
/*------------------------*/

/*------------------------*/
string unshared id_token /* Application ID value */

/* parsed from utbl entry.*/
/* Created by PARSPROC. */
/*------------------------*/

/*------------------------*/
string unshared message_area /* Used in SAVEMSG to */

/* determine if the */

Chapter 25. AVMON example 351

/* current screen line */
/* contains a VTAM message*/
/* of concern. */
/*------------------------*/

/*------------------------*/
string unshared vtam_message /* The entire VTAM message*/

/* is saved in this. */
/*------------------------*/

/*------------------------*/
string unshared password_token /* ID password value */

/* parsed from utbl entry.*/
/* Created by PARSPROC. */
/*------------------------*/

/*------------------------*/
string shared time_of_day /* Used to store the */

/* current time of day. */
/*------------------------*/

/*------------------------*/
string shared close_log_indicator /* Used to store the */

/* content of the constant*/
/* "message_log_device" */
/* so that logic testing */
/* may be performed. */
/*------------------------*/

/*------------------------*/
string shared queue /* Special message queue. */

/*------------------------*/

/*------------------------*/
string shared netv_queue /* Special message to be */

/* sent to NetView oper- */
/* ator queue. */
/*------------------------*/

Bit variables
/*------------------------*/

bit unshared msg_located /* Used to indicate the */
/* VTAM message was found.*/
/*------------------------*/

/*------------------------*/
bit shared netview_still_active /* Used to indicate to */

/* AMONNETV that the */
/* NetView LU is still */
/* active. */
/*------------------------*/

/*------------------------*/
bit shared tso_still_active /* Used to indicate to */

/* AMONTSO that the TSO */
/* LU is still active. */
/*------------------------*/

/*------------------------*/
bit shared tso_recovered /* Used to indicate to */

/* AMONTSO that the TSO */
/* LU has recovered after */
/* using ATTENTION key. */
/*------------------------*/

352 Creating Workload Simulator Scripts

Table declarations
/*---*/
/* MSGUTBLs are used by AVMON to provide flexibility. You may add */
/* to the tables if you wish, and AVMON will automatically know the */
/* size. This is another way STL makes WSim scripting easier. */
/* */
/* All tables contain string data. Therefore all entries must be */
/* enclosed in single quotes. What may go in each entry is really */
/* determined by what it will be used for. For example, the */
/* table "restble" contains the names of VTAM resources to be */
/* monitored. These entries should be valid resource names. */
/*---*/

/*---*/
/* The table "restble" contains the names of network resources you */
/* want AVMON to periodically check. AVMON does this by issuing */
/* a D NET,ID=resource_name,NONE command and seeing what the result */
/* is. */
/* */
/* You may put as many resource names in this table as you wish. */
/* Please be aware that the time it takes to cycle through this */
/* entire list is determined by the constant "resource_loop". */
/* Ensure the value for "resource_loop" is at least that of the */
/* number of names in this table. Otherwise the delay between */
/* messages will be zero. */
/*---*/

restble: msgutbl
’TSO01’
’CNM01’
’IMS01’
’CICS01’
’APPL1’
’APPL2’
endutbl

/*---*/
/* The table titled "ctrltble" is used to list the names of the */
/* LUs that control the NetView and TSO LU pools. If you modify */
/* AVMON to monitor more systems than that, you may add the names */
/* of these new controlling LUs to this table. */
/* */
/* The LU that provides overall control of AVMON uses this table to */
/* release the subsystem controller LUs from their initial quiesced */
/* state. */
/*---*/

ctrltble: msgutbl
’TSOCTRL’
’NETVCTRL’
endutbl

/*---*/
/* The table "netvtble" contains the NetView operator IDs and */
/* passwords that will be used by the LUs that actually log onto */
/* NetView and issue the D NET commands. This configuration of */
/* AVMON provides three LUs in this pool. If one goes inactive for */
/* any reason, AVMON will quiesce it and use the next LU in the pool.*/
/* If you wish to add more LUs to the pool you may do so. Simply */
/* provide more VTAMAPPL-LU groups to your NTWRK configuration, and */
/* add to this list. */
/* */
/* The format of this table is: */
/* */

Chapter 25. AVMON example 353

/* ’operator_id,password’ */
/* */
/* It must be in this order, and a comma must separate the values */
/* within the table entry. */
/* */
/* Once again, please make sure WSim LU names you coded in your */
/* network configuration match these operator IDs. */
/*---*/

netvtble: msgutbl
’NVOPER1,NVPASS1’
’NVOPER2,NVPASS2’
’NVOPER3,NVPASS3’
endutbl

/*---*/
/* The table "tsotable" operates in an identical manner to the table */
/* called "netvtble". Please review the explanation of that table */
/* for information about this table. */
/*---*/

tsotable: msgutbl
’TSOID1,TSOPASS1’
’TSOID2,TSOPASS2’
’TSOID3,TSOPASS3’
endutbl

ACTLRNET procedure
/*---*/
/* The STL procedures follow from here to the end of this program. */
/*---*/

/*---*/
/* Procedure Name: ACTLRNET */
/* Used by: Network controller LU (NETCTRL) */
/* */
/* The procedure "actlrnet" is used to provide overall AVMON */
/* coordination and control. It’s primary function is to */
/* start and stop AVMON at the specified times, and to provide the */
/* status report at the specified intervals. */
/*---*/

actrlnet: msgtxt
/*--*/
/* Begins by transferring constant value to variable value*/
/* for logic testing later, and setting up the special */
/* message "on signaled" condition. Once done, it calls */
/* the procedure "reftime" to check the current time of */
/* day. */
/*--*/
close_log_indicator=message_log_device
on signaled(’SPECMSG’) then execute specmsg
call reftime

/*--*/
/* AVMON will not start monitoring until the specified */
/* start time has passed (constant "start_time"). It */
/* checks to see if it’s okay to begin, and if not then */
/* it calculates the delay and suspends until that time. */
/*--*/
if substr(time_of_day,1,5)<start_time then
do
start=tod(6)

354 Creating Workload Simulator Scripts

stop=substr(start_time,1,2)||substr(start_time,4,2)||’00’
call timer
suspend(total_elapsed_seconds)
end

/*--*/
/* Monitoring has now begun. A message is put out to the */
/* console and log saying this is so. */
/*--*/
call reftime
say ’Begin Monitoring at’ time_of_day,

month()||’/’|| day()||’/’|| year()
log ’Begin Monitoring at’ time_of_day,

month()||’/’|| day()||’/’|| year()

/*--*/
/* A quick loop through "ctrltble" releases all the sub- */
/* system controller LUs. */
/*--*/
do i=0 to utblmax(ctrltble)
opcmnd ’a ’||utbl(ctrltble,i)||’,release’
end
suspend(10)
call reftime

/*--*/
/* The following "do while" loop checks to see if it is */
/* time to stop AVMON. If not, then the AVMON controller */
/* waits 180 seconds (3 minutes). Upon exiting the wait */
/* it updates the overall time counter and the statistics */
/* message counter by 3 minutes. */
/*--*/
do while substr(time_of_day,1,5)<stop_time
suspend(180)
overall_time=overall_time+3
stats_msg_counter=stats_msg_counter+3

/*---*/
/* A check to see if it’s time to print out the */
/* statistics message. If so, then the time is re- */
/* formatted and "avstats" is called. If not, then */
/* processing simply loops back to the check for end */
/* of monitoring. */
/*---*/
if stats_msg_counter>=stats_msg_cycle_time then
do
call reftime
call avstats
end
else nop
call reftime
end

/*--*/
/* The current time of day has passed the designated stop */
/* time, so AVMON will shut down. One last message is */
/* issued and AVMON is stopped. */
/*--*/
call reftime
say ’End Monitoring at’ time_of_day,

month()||’/’||day()||’/’||year()
log ’End Monitoring at’ time_of_day,

month()||’/’||day()||’/’||year()

/*--*/
/* The following command will end the WSim job. */
/*--*/
opcmnd ’zend’
quiesce
endtxt

Chapter 25. AVMON example 355

AMONNETV procedure
/*---*/
/* Procedure Name: AMONNETV */
/* Used by: NetView pool controller LU (NETVCTRL) */
/* */
/* The procedure called ’amonnetv’ is used to monitor and */
/* control the NetView LU pool. The primary purpose of this */
/* procedure is to keep tabs on the LU pool, checking to see if the */
/* current LU is still active, and if not then releasing the next */
/* LU from the pool. If the pool becomes exhausted, this procedure */
/* will request the reinitialization of the entire network (thus */
/* refreshing the pool). */
/*---*/

amonnetv: msgtxt
/*--*/
/* NETVCTRL is initially quiesced so that NETCTRL can */
/* get control of the overall timing. When NETCTRL */
/* releases NETVCTRL, the variable that tracks which LU */
/* from the LU pool is currently active is initialized to */
/* zero (necessary because user tables are zero-based). */
/* The type of terminals being controlled by this device */
/* is designated as "NetView". The NetView ID name */
/* and password are pulled from the table and set for */
/* "parsproc" to parse out the values separately. */
/* NETVCTRL then releases the first LU from the pool. */
/*--*/
quiesce
netview_pool_lu_number=0
termtype=’NetView’
table_string=utbl(netvtble,netview_pool_lu_number)
call parsproc
opcmnd ’a ’||id_token||’,release’

/*--*/
/* NETVCTRL now goes into a loop that checks the status */
/* of the monitoring LU. The loop repeats itself every */
/* 180 seconds (3 minutes). */
/*--*/
do forever
suspend(180)

/*---*/
/* The variable ’netview_still_active’ is a switch that */
/* is turned on by the monitoring LU to indicate it is */
/* still active. If the switch is on then the count of */
/* NetView availability is incremented by 3 minutes and */
/* the switch is turned off. If NETVCTRL returns and */
/* the switch is back on, then the monitoring LU must */
/* still be active. */
/*---*/
if netview_still_active=on then
do
netview_availability=netview_availability+3
netview_still_active=off
end
else

/*---*/
/* The switch was off, so the monitoring LU is con- */
/* sidered to be inactive at this time. The following */
/* actions are now taken: */
/* o A message telling of the inactivity is placed */
/* on the message queue (with a two-byte hex length */
/* header in front of each message). */
/* o ’SPECMSG’ is signalled, which triggers NETCTRL */
/* to begin special message processing */
/* o A 60-second wait is then started. */
/*---*/

356 Creating Workload Simulator Scripts

do
call reftime
temp=’NetView term’,

id_token,
’not responding’,
time_of_day

queue=queue||hex(length(temp),2)||temp
signal ’SPECMSG’
suspend(60)

/*---*/
/* A check is again made to see if the monitoring LU */
/* is active. If so, then an integer value of 120 */
/* seconds is set and the procedure "nowok" is called. */
/*---*/
if netview_still_active=on then
do
terminal_suspend_time=120
call nowok
end
else

/*---*/
/* The monitoring LU was still not active after the */
/* first one minute wait, so it will be given another */
/* one minute wait to become active. If after the */
/* wait it’s active again, then an integer value of */
/* 60 seconds is set and "nowok" is called. */
/*---*/
do
suspend(60)
if netview_still_active=on then
do
terminal_suspend_time=60
call nowok
end
else

/*--*/
/* At this point the monitoring LU is considered */
/* permanently inactive. It is time to quiesce */
/* this LU and release the next in the pool. */
/* */
/* A check is made to see if the pool is exhausted. */
/* If not, then the following actions are taken: */
/* - a special message is put out */
/* - the inactive terminal is quiesce */
/* - the pool LU number is incremented */
/* - the next ID/password string is extracted */
/* - "parsproc" splits the tokens out */
/* - the next LU is released */
/*--*/
do
if netview_pool_lu_number<utblmax(netvtble) then
do
call reftime
temp=’NetView term’,

id_token,
’inactive’,
time_of_day

queue=queue||hex(length(temp),2)||temp
signal ’SPECMSG’
opcmnd ’a ’||id_token||’,quiesce’
netview_pool_lu_number=netview_pool_lu_number+1
table_string=utbl(netvtble,netview_pool_lu_number)
call parsproc
opcmnd ’a ’||id_token||’,release’

end
else

Chapter 25. AVMON example 357

/*---*/
/* The pool was found to be exhausted, so a */
/* reinitialization of AVMON is required to */
/* refresh the pool. "avstats" is called to put */
/* out a status report before reinitialization, */
/* a special message is added to the queue, and */
/* the procedure "reinit" is called. */
/*---*/
do
call reftime
call avstats
temp=’NetView Pool Exhaused. Reinit AVMON’,

time_of_day
call reinit
end

/*--*/
/* End reinitialization processing. */
/*--*/

end
/*--*/
/* End permanently inactive LU processing */
/*--*/

end
/*--*/
/* End temporarily inactive LU processing, 2nd wait. */
/*--*/

end
/*--*/
/* End temporarily inactive LU processing, 1st wait. */
/*--*/

end
/*--*/
/* End "do forever" loop. */
/*--*/
endtxt

ALOGNETV procedure
/*---*/
/* Procedure Name: ALOGNETV */
/* Used by: NetView monitoring LUs. */
/* */
/* The procedure called ’alognetv’ is used by the monitoring */
/* LUs to log on to NetView. */
/*---*/

alognetv: msgtxt
/*--*/
/* The LU falls into a quiesced state to begin with. When*/
/* it’s released by the controlling LU it sends an */
/* initself. */
/*--*/
quiesce
initself(netview_logon_appl,netview_mode_table)

/*--*/
/* The following loop periodically check to see if the */
/* NetView logon screen has been received. When it has, */
/* then processing continues. */
/*--*/
do while index(screen,’ENTER LOGON INFORMATION’)=0
suspend(3)
end

/*--*/
/* The appropriate ID/password string is pulled from the */
/* table and passed to "parsproc", which separates and */

358 Creating Workload Simulator Scripts

/* returns the individual components. The ID and password*/
/* values are then typed on the screen, along with the */
/* "NO" for running the initial NetView procedure. The */
/* screen is then transmitted and this LU waits until */
/* either the NetView separator line (-----), or the */
/* string "ALREADY LOGGED ON" is returned. */
/*--*/
table_string=utbl(netvtble,netview_pool_lu_number)
call parsproc
type id_token
nl
type password_token
nl
nl
nl
type ’NO’
transmit using enter and wait until onin,

index(screen,’--------’)>0 |,
index(screen,’ALREADY LOGGED ON’)>0

/*--*/
/* A check is made to see if "ALREADY LOGGED ON" was */
/* returned. If so, this LU can do no more. A message */
/* is put out and the LU is quiesced. */
/*--*/
if index(screen,’ALREADY LOGGED ON’)>0 then
do
call reftime
say id_token ’unable to logon. Time:’ time_of_day
log id_token ’unable to logon. Time:’ time_of_day
quiesce
end
else nop

/*--*/
/* The LU is now logged onto NetView. "AUTOWRAP" is */
/* typed and transmitted, with a wait for the NetView */
/* message "DSI082I", which indicates autowrap has been */
/* started. When this is returned, a message is put */
/* out, and processing continues to the procedure */
/* "achknetv". */
/*--*/
type ’AUTOWRAP YES’
transmit using enter and wait until onin,

index(screen,’DSI082I’)>0
call reftime
say ’NetView terminal’ id_token ’logged on’ time_of_day
log ’NetView terminal’ id_token ’logged on’ time_of_day
endtxt

ACHKNETV procedure
/*---*/
/* Procedure Name: ACHKNETV */
/* Used by: NetView monitoring LUs. */
/* */
/* The procedure ’achknetv’ is executed by the monitoring LUs */
/* to check the status of the resources you’ve named in ’restble’. */
/* Its primary function is to issue a ’D NET,ID=resource’ command */
/* to NetView and report on the status it sees in return. */
/*---*/

achknetv: msgtxt
/*--*/
/* The ’on signaled’ condition ’NETVMSG’ is activated. */
/* This will cause the special message to be sent to the */
/* designated NetView operator. The resource table index */

Chapter 25. AVMON example 359

/* number is initialized to zero. A check is made to see */
/* if the special message queue has any messages left */
/* over from a prior pool LU that could not complete the */
/* sending of all messages. If messages remain, "netvmsg"*/
/* is called to process them. */
/*--*/
on signaled(’NETVMSG’) then call netvmsg
table_index=0
if length(netv_queue)>0 then call netvmsg
do forever

/*---*/
/* The monitoring LU has entered a "do forever" loop that*/
/* will process the D NET messages until told to quit. */
/* A D NET command is typed on the screen and transmitted*/
/* to NetView. It waits until it sees either the 314I */
/* message indicating the end of that display group, or */
/* the 453I message indicating a name unknown to VTAM. */
/* When either is returned, the "still active" switch is */
/* turned on and the procedure "savemsg" is called. */
/* "savemsg" interrogates the screen and saves the line */
/* that has the status indicator. */
/*---*/
type ’d net,id=’||utbl(restble,table_index)||’,none’
transmit using enter and wait until onin,

index(ru,’IST314I’)>0 |,
index(ru,’IST453I’)>0

netview_still_active=on
call savemsg

/*---*/
/* Upon return from "savemsg" we now have the results of */
/* the D NET command. Because VTAM changed the message */
/* format of IST486I between VTAM 3.1.1 and VTAM 3.2, */
/* we need to check for either "STATUS=" in VTAM 3.1.1 */
/* or "CURRENT STATE" in VTAM 3.2 */
/*---*/
status_offset=index(vtam_message,’STATUS=’)
state_offset=index(vtam_message,’CURRENT STATE’)
if status_offset>0 | state_offset>0 then

/*---*/
/* Somewhere in the saved VTAM message there is the */
/* status indicator. Because of the message format */
/* difference, where it’s located depends on the level */
/* of VTAM that returned the message. A check is made */
/* and the status indicator is saved. */
/*---*/
do
if status_offset>0 & state_offset=0 then,

resource_status=substr(vtam_message,status_offset+8,10)
else

resource_status=substr(vtam_message,state_offset+16,10)

/*---*/
/* A check is made to see if "ACTIV" was NOT the value */
/* of the status indicator. A special message needs */
/* to be issued. */
/*---*/
if resource_status¬=’ACTIV’ then
do
call reftime
temp=’Status of’,

utbl(restble,table_index),
’:’ resource_status ’Time:’ time_of_day

queue=queue||hex(length(temp),2)||temp
signal ’SPECMSG’

360 Creating Workload Simulator Scripts

end
else nop
end
else

/*---*/
/* Neither "STATUS=" or "CURRENT STATE" was found, so */
/* this means the resource is unknown to VTAM. Usually */
/* this implies the resource is not activated. A special*/
/* message is generated. */
/*---*/
do
call reftime
temp=utbl(restble,table_index),

’not activated. Time:’ time_of_day
queue=queue||hex(length(temp),2)||temp
signal ’SPECMSG’
end

/*---*/
/* Some post-D NET processing is required. The string */
/* variables are cleaned out, the suspend time is */
/* calculated and invoked, and if the end of the resource*/
/* table has been reached, the index number is reset */
/* to zero to start over again. */
/*---*/
vtam_message=’’
resource_status=’’
suspend_time=resource_loop/(utblmax(restble)+1)
suspend(suspend_time)
table_index=table_index+1
if table_index>utblmax(restble) then table_index=0
end
endtxt

AMONTSO procedure
/*---*/
/* Procedure Name: AMONTSO */
/* Used by: TSO pool controller LU (TSOCTRL) */
/* */
/* The procedure ’amontso’ is used to monitor and control the TSO */
/* LU pool. The primary purpose of this procedure is to keep tabs */
/* on the LU pool, checking to see if the current LU is still active,*/
/* and if not then releasing the next LU from the pool. If the pool */
/* becomes exhausted, this procedure will request the reinitial- */
/* ization of the entire network (thus refreshing the pool). */
/*---*/

amontso: msgtxt
/*--*/
/* TSOCTRL is initially quiesced so that NETCTRL can */
/* get control of the overall timing. When NETCTRL */
/* releases TSOCTRL, the variable that tracks which LU */
/* from the LU pool is currently active is initialized to */
/* zero (necessary because user tables are zero-based). */
/* The type of terminals being controlled by this device */
/* is designated as "TSO". The TSO ID name */
/* and password are pulled from the table and passed to */
/* "parsproc" to parse out the values separately. */
/* TSOCTRL then releases the first LU from the pool. */
/*--*/
quiesce
tso_pool_lu_number=0
termtype=’TSO’

Chapter 25. AVMON example 361

table_string=utbl(tsotable,tso_pool_lu_number)
call parsproc
opcmnd ’a ’||id_token||’,release’

/*--*/
/* TSOCTRL now goes into a loop that checks the status */
/* of the monitoring LU. The loop repeats itself every */
/* 180 seconds (3 minutes). */
/*--*/
do forever
suspend(180)

/*---*/
/* The variable ’tso_still_active’ is a switch that */
/* is turned on by the monitoring LU to indicate it is */
/* still active. If the switch is on then the count of */
/* TSO availability is incremented by 3 minutes and */
/* the switch is turned off. If TSOCTRL returns and */
/* the switch is back on, then the monitoring LU must */
/* still be active. */
/*---*/
if tso_still_active=on then
do
tso_availability=tso_availability+3
tso_still_active=off
end
else

/*---*/
/* The switch was off, so the monitoring LU is con- */
/* sidered to be inactive at this time. The following */
/* actions are now taken: */
/* o A message telling of the inactivity is placed */
/* on the message queue (with a two-byte hex length */
/* header in front of each message). */
/* o ’SPECMSG’ is signalled, which triggers NETCTRL */
/* to begin special message processing */
/* o A 60-second wait is then started. */
/*---*/
do
call reftime
temp=’TSO term’,

id_token,
’not responding’,
time_of_day

queue=queue||hex(length(temp),2)||temp
signal ’SPECMSG’
suspend(60)

/*---*/
/* A check is again made to see if the monitoring LU */
/* is active. If so, then a parameter value of 120 */
/* seconds is set and the procedure "nowok" is called. */
/*---*/
if tso_still_active=on then
do
terminal_suspend_time=120
call nowok
end
else

/*---*/
/* The monitoring LU was still not active after the */
/* first one minute wait, so it will be given another */
/* one minute wait to become active. If after the */
/* wait its active again, then a parameter value of */
/* 60 seconds is set and "nowok" is called. */
/*---*/
do
suspend(60)

362 Creating Workload Simulator Scripts

if tso_still_active=on then
do
terminal_suspend_time=60
call nowok
end
else

/*---*/
/* The monitoring LU was still not active, so a */
/* final measure will be taken. The signal "ATTENT" */
/* is given to get the TSO LU to issue its attention */
/* key. The controlling LU checks every 10 seconds */
/* to see if the monitoring LU has recovered. */
/*---*/
do
signal ’ATTENT’
do tso_recovery_wait = 10 to 60 by 10
suspend(10)
if tso_recovered=on then leave
end
tso_recovered=off

/*---*/
/* Did TSOCTRL leave the loop because the monitor- */
/* ing LU became active, or because the loop time */
/* expired? If the total recovery wait time was */
/* greater than or equal to 60 seconds, then */
/* the loop time expired and the monitoring LU */
/* must still be inactive. If it is inactive, */
/* then it will be considered permanently inactive,*/
/* and TSOCTRL will attempt to start another LU */
/* from the pool. */
/*---*/
if tso_recovery_wait>=60 then
do
if tso_pool_lu_number<utblmax(tsotable) then
do

/*---*/
/* The TSO LU pool still has some available */
/* LUs, so TSOCTRL will start the next LU from */
/* the pool. A special message is put out */
/* saying this. The inactive LU is quiesced, */
/* the pool index number is incremented, the */
/* next ID/password value is retrieved, and */
/* the next LU is released from its quiesced */
/* state. */
/*---*/
call reftime
temp=’TSO term’,

id_token,
’inactive’,
time_of_day

queue=queue||hex(length(temp),2)||temp
signal ’SPECMSG’
opcmnd ’a ’||id_token||’,quiesce’
tso_pool_lu_number=tso_pool_lu_number+1
table_string=utbl(tsotable,tso_pool_lu_number)
call parsproc
opcmnd ’a ’||id_token||’,release’

end
else
do

/*---*/
/* The TSO LU pool is exhausted, so all of */
/* AVMON will need to be reinitialized to */
/* refresh the pool. A status report is */
/* requested, a special message is built, */
/* and the procedure "reinit" is called. */

Chapter 25. AVMON example 363

/*---*/
call reftime
call avstats
temp=’TSO Pool Exhaused. Reinit AVMON’,

time_of_day
call reinit
end

/*--*/
/* End reinitialization processing. */
/*--*/

end
/*--*/
/* End permanently inactive LU processing. */
/*--*/
else
do

/*---*/
/* The TSO LU recovered after issuing its */
/* attention key, so processing passes to */
/* the procedure "nowok" with a suspend time */
/* of zero. */
/*---*/
terminal_suspend_time=0
call nowok
end
/*--*/
/* End recovered by attention key processing. */
/*--*/

end
/*--*/
/* End attention key processing. */
/*--*/

end
/*--*/
/* End temporarily inactive LU, 2nd wait. */
/*--*/

end
/*--*/
/* End temporarily inactive LU, 1st wait. */
/*--*/

end
/*--*/
/* End "do forever" loop. */
/*--*/
endtxt

ALOGTSO procedure
/*---*/
/* Procedure Name: ALOGTSO */
/* Used by: TSO monitoring LUs */
/* */
/* The procedure "alogtso" is used by the TSO monitoring LUs to log */
/* onto the system. */
/*---*/

alogtso: msgtxt
/*--*/
/* The monitoring LU is initially quiesced so that overall*/
/* timing can be established. It will be released by the */
/* LU controlling the TSO pool. The onin condition is */
/* established to protect against the end-of-page */
/* condition. The first ID/password string is retrieved */
/* and passed to "parsproc". An initself is sent and */
/* this LU waits until it sees the password entry screen. */

364 Creating Workload Simulator Scripts

/*--*/
quiesce
onin substr(screen,coff()-4,3)=’***’ &,

substr(screen,coff()-5,1)¬=’*’ then call clearit
table_string=utbl(tsotable,tso_pool_lu_number)
call parsproc
initself(tso_logon_appl,tso_mode_table,id_token)
do while index(screen,’PASSWORD’)=0
suspend(2)
end

/*--*/
/* The password screen has arrived, so the password is */
/* entered. The LU will wait until either the "ready" */
/* indicator or "rejected" indicator is returned. */
/*--*/
type password_token
transmit using enter and wait until onin,

index(screen,’READY’)>0 |,
index(screen,’REJECTED’)>0

if index(screen,’REJECTED’)>0 then
do

/*--*/
/* The LU has experienced a rejection of its logon */
/* attempt, so it will try a reconnect. It waits for */
/* the password screen to come back and it resends */
/* with the reconnect indicator. */
/*--*/
type ’LOGON ’||id_token||’ RECONNECT’
transmit using enter and wait until onin,

index(screen,’PASSWORD’)>0
type password_token
transmit using enter and wait until onin,

index(screen,’READY’)>0 |,
index(screen,’REJECTED’)>0

if index(screen,’REJECTED’)>0 then
do

/*--*/
/* The LU was rejected a second time, so therefore */
/* the ID must be in use somewhere else. A special */
/* message is built and SPECMSG is signaled. This */
/* LU is quiesced. The controlling LU will eventually*/
/* detect this and start the next LU in the pool. */
/*--*/
call reftime
temp=id_token ’unable to logon. Time:’ time_of_day
queue=queue||hex(length(temp),2)||temp
signal ’SPECMSG’
quiesce
end
else nop
end
else nop

/*--*/
/* The LU is now logged on to TSO. A message is sent */
/* indicating this, and processing goes to "achktso". */
/*--*/
call reftime
say ’TSO terminal’ id_token ’logged on’ time_of_day
log ’TSO terminal’ id_token ’logged on’ time_of_day
endtxt

Chapter 25. AVMON example 365

ACHKTSO procedure
/*---*/
/* Procedure Name: ACHKTSO */
/* Used by: TSO monitoring LUs */
/* */
/* The procedure "achktso" is used by the TSO monitoring LUs to */
/* check the status of TSO by invoking a simple CLIST that indicates */
/* the time of day. WSim does not supply this CLIST with AVMON, */
/* but it’s simple enough to add. Here’s what the CLIST should */
/* look like: */
/* */
/* PROC 0 COUNT(5) */
/* DO WHILE &COUNT > 0 */
/* SET COUNT = &COUNT-1 */
/* END */
/* TIME */
/* */
/* Be sure to put this in the dataset specified on the "type" */
/* statement. */
/* */
/* The time that elapses between the sending of the message and */
/* the receipt of the "ready" indicator is compared against the */
/* value of the "max_response_time" constant. If the response time */
/* is within acceptable limits, no message is issued. Longer times */
/* will be flagged. */
/*---*/

achktso: msgtxt
/*--*/
/* The onin condition to hit clear when the end-of-page */
/* indicator is seen is established. The "on signaled" */
/* action whenever "ATTENT" is seen is established. The */
/* LU then enters a "do forever" loop that continues to */
/* check the status of TSO until told to stop. */
/*--*/
onin substr(screen,coff()-4,3)=’***’ &,

substr(screen,coff()-5,1)¬=’*’ then call clearit
on signaled(’ATTENT’) then call attnkey
do forever

/*---*/
/* The command to execute the CLIST is typed, */
/* but not yet sent. The start time-of-day stamp is set,*/
/* and the message is sent to TSO with the instructions */
/* to wait until it sees "READY". When "READY" is */
/* returned, the stop time stamp is set and the switch */
/* indicating continued activity is set on. The */
/* procedure "timer" is called to calculate the time */
/* difference between the start and stop time stamps. */
/*---*/
type "exec ’wsim.avmon.clist(timechk)’"
start=tod(6)
transmit using enter and wait until,

onin index(ru,’READY’)>0
stop=tod(6)
tso_still_active=on
call timer

/*---*/
/* A check is made to see if the response time is greater*/
/* than acceptable. If so, then a special message is */
/* sent indicating this. */
/*---*/
if total_elapsed_seconds > max_response_time then
do
call reftime

366 Creating Workload Simulator Scripts

temp=’TSO has bad response time at’ time_of_day
queue=queue||hex(length(temp),2)||temp
signal ’SPECMSG’
end
else nop

/*---*/
/* This LU is suspended for the specified period of time.*/
/*---*/
suspend(achktso_suspend_time)
end
endtxt

AVMON utility procedures
/*---*/
/* The following STL procedures are called or executed by the */
/* primary procedures shown above. They perform a variety of */
/* activities. */
/*---*/

SAVEMSG
/*---*/
/* Procedure Name: SAVEMSG */
/* Used by: NetView pool controller LU (NETVCTRL) */
/* Called or executed from: ACHKNETV */
/* */
/* The procedure ’savemsg’ locates the VTAM message IST088I, */
/* IST453I, or IST486I and saves it away for later processing */
/* */
/* This is a fairly complex task on a NetView screen because the */
/* screen wraps bottom to top. Thus it’s possible to have two */
/* messages of concern on the screen at the same time: the most */
/* recent and the one prior to that. There’s no way of knowing */
/* which one is the most recent except that it should be nearest */
/* the separator line (------). This is how this procedure works: */
/* it locates the separator line and works backwards from there */
/* until it finds the appropriate message. */
/*---*/

savemsg: msgtxt
/*--*/
/* The separator line is located on the screen and the */
/* offset is saved. If no line is found, it’s assumed */
/* the line is off the end of the page (this will happen */
/* when the information fills the screen, but does not */
/* need to wrap...the line simply drops off the screen). */
/* In this case the string "???" is used to start the */
/* backwards process. */
/* */
/* The cursor is moved two places to the left of the start*/
/* of the line. It’s on this column that the messages */
/* appear. A loop is begun that will continue until */
/* the message is found. */
/*--*/
line_offset=index(screen,’------’)
if line_offset=0 then line_offset=index(screen,’???’)
cursor(line_offset-2)
do while msg_located=off

/*--*/
/* The cursor is moved up one line and a check is made */
/* for any of the three pertinent messages. If found, */
/* then the whole line is saved. */
/*--*/
cursor("up")
message_area=substr(screen,coff(),19)

Chapter 25. AVMON example 367

if substr(message_area,1,7)=’IST088I’ |,
substr(message_area,1,7)=’IST486I’ |,
substr(message_area,13,7)=’IST453I’ then

do
vtam_message=substr(screen,coff(),80)
msg_located=on
end
else if line_offset=coff()+2 then
do

/*--*/
/* The cursor has looped around the screen and is back */
/* to the starting point. This means none of the */
/* messages could be found. A message is issued saying */
/* this, and "msg_located" is turned on so that the LU */
/* doesn’t enter an infinite loop. */
/*--*/
call reftime
say luid() ’could not find VTAM message at’ time_of_day
log luid() ’could not find VTAM message at’ time_of_day
msg_located=on
end
else nop
end

/*--*/
/* The message has been found and the LU has left the */
/* loop. "msg_located" is turned off and the cursor is */
/* returned to the home position. */
/*--*/
msg_located=off
home
return
endtxt

SPECMSG
/*---*/
/* Procedure Name: SPECMSG */
/* Used by: NETCTRL */
/* Called or executed from: ACTRLNET. Any LU may issue the signal */
/* that causes NETCTRL to execute this */
/* procedure. */
/* */
/* The msgtxt procedure ’specmsg’ is executed frequently whenever */
/* a special message needs processing. The messages are placed on */
/* a queue with a 2-byte hex header that identifies the length of */
/* the following message. This procedure strips the message from */
/* the queue, issues it in the form of a console message and log */
/* message, then places the message on the back of the NetView */
/* message queue. ’NETVMSG’ is then signaled to tell the NetView */
/* monitoring LU to process the special message. The message is */
/* then removed from the queue. */
/*---*/

specmsg: msgtxt
say substr(queue,3,c2d(substr(queue,1,2)))
log substr(queue,3,c2d(substr(queue,1,2)))
netv_queue=netv_queue||,

substr(queue,1,c2d(substr(queue,1,2))+2)
queue=substr(queue,(c2d(substr(queue,1,2))+3))
signal ’NETVMSG’
on signaled(’SPECMSG’) then execute specmsg
return
endtxt

368 Creating Workload Simulator Scripts

NETVMSG
/*---*/
/* Procedure Name: NETVMSG */
/* Used by: NetView monitoring LUs */
/* Called or executed from: ACHKNETV. The signal that causes this */
/* procedure to be called is issued from */
/* the procedure "specmsg". */
/* */
/* The procedure ’netvmsg’ is used by one of the NetView */
/* monitoring LUs whenever the event ’NETVMSG’ is signaled by */
/* NETCTRL. This generally occurs whenever a special message needs */
/* to be sent to the designated NetView operator. */
/* */
/* The procedure works in this fashion: */
/* o A ’do while’ loop is set up to process while the length */
/* of the message queue is greater than zero. */
/* o The special message is taken from the front of the queue */
/* and sent to the NetView operator. */
/* o The message is removed from the front of the queue. */
/*---*/

netvmsg: msgtxt
do while length(netv_queue)>0
tab
ereof
type ’msg ’||netview_msg_operator||’ ’||,

substr(netv_queue,3,c2d(substr(netv_queue,1,2)))
transmit using enter
suspend(1)
netv_queue=substr(netv_queue,(c2d(substr(netv_queue,1,2))+3))
end
on signaled(’NETVMSG’) then call netvmsg
post ’MSGCOMP’
return
endtxt

REFTIME
/*---*/
/* Procedure Name: REFTIME */
/* Used by: all LUs */
/* Called or executed from: ACTLNET, AMONNETV, ALOGNETV, ACHKNETV, */
/* AMONTSO, ALOGTSO, ACHKNETV, SAVEMSG, */
/* NOWOK */
/* */
/* The procedure ’reftime’ is called frequently throughout all */
/* of AVMON. It simply reformats the current time of day from the */
/* standard "HHMMSS" to "HH:MM:SS". */
/*---*/

reftime: msgtxt
time_of_day=substr(TOD(6),1,2)||’:’||,

substr(TOD(6),3,2)||’:’||,
substr(TOD(6),5,2)

return
endtxt

AVSTATS
/*---*/
/* Procedure Name: AVSTATS */
/* Used by: NETCTRL, NETVCTRL, TSOCTRL */
/* Called or executed from: ACTLNET, AMONNETV, AMONTSO */
/* */
/* The procedure ’avstats’ simply puts out an availability */
/* report whenever: */

Chapter 25. AVMON example 369

/* o NETCTRL determines the time has come based on the value of */
/* ’stats_msg_counter’, or */
/* o One of the LU pools has been exhausted and AVMON reinitial- */
/* ization is necessary. */
/* */
/* NOTE: This msgtxt procedure may require changes if you add more */
/* subsystem monitoring responsibilities to your AVMON */
/* configuration. */
/*---*/

avstats: msgtxt
say ’--------------------------------------’
say ’ AVMON Availability Report -’ time_of_day
say ’ Total time of AVMON monitoring:’ char(overall_time)
say ’ ’
say ’ Subsystem availability times:’
say ’ Netview’ char(netview_availability)
say ’ TSO’ char(tso_availability)
say ’--------------------------------------’
log ’--------------------------------------’
log ’ AVMON Availability Report -’ time_of_day
log ’ Total time of AVMON monitoring:’ char(overall_time)
log ’ ’
log ’ Subsystem availability times:’
log ’ Netview’ char(netview_availability)
log ’ TSO’ char(tso_availability)
log ’--------------------------------------’

/*--*/
/* The following IF determines the type of device you’re */
/* logging to. If you’re logging to disk, then two */
/* successive ’E’ commands are issued that save the */
/* dataset on a periodic basis. */
/* */
/* NOTE: make sure you specify DISP=MOD on your execution */
/* JCL for the LOGDD dataset. */
/* */
/* If you were logging to tape, you would not want to */
/* issue an ’E’ command because that would cause the */
/* tape to rewind, destroying previously logged activity. */
/*--*/
if close_log_indicator=’DISK’ |,

close_log_indicator=’disk’ then
do
opcmnd ’E’
opcmnd ’E’
end
else nop
stats_msg_counter=0
return
endtxt

REINIT
/*---*/
/* Procedure Name: REINIT */
/* Used by: NETVCTRL, TSOCTRL */
/* Called or executed from: AMONNETV, AMONTSO */
/* */
/* The procedure ’reinit’ is called when AVMON needs to be */
/* reinitialized to refresh the LU pools. */
/*---*/

reinit: msgtxt
queue=queue||hex(length(temp),2)||temp
signal ’SPECMSG’
if substr(time_of_day,1,5)>=reinit_stop_time then
do

370 Creating Workload Simulator Scripts

/*--*/
/* No restart of AVMON will be attempted because the */
/* time of day is past the latest restart time. A */
/* special message is processed and the controller */
/* LU simply waits. */
/*--*/
temp=’*** No restart of AVMON at this time:’ time_of_day
queue=queue||hex(length(temp),2)||temp
signal ’SPECMSG’
wait
end
else
do

/*--*/
/* A restart of AVMON will be attempted. A special */
/* message is processed indicating this. The post and */
/* wait statements are allowing the NetView terminal */
/* to clean out its special message queue before the */
/* reinitialization. Once done, AVMON is cancelled, */
/* initialized, and restarted. */
/*--*/
temp=’Restart of AVMON by’ LUID() ’:’ time_of_day
queue=queue||hex(length(temp),2)||temp
reset ’MSGCOMP’
signal ’SPECMSG’
post ’MSGCOMP’ after 10
wait until posted(’MSGCOMP’)
opcmnd ’c avmon’
opcmnd ’i avmon’
opcmnd ’s avmon’
wait
end
return
endtxt

NOWOK
/*---*/
/* Procedure Name: NOWOK */
/* Used by: NETVCTRL, TSOCTRL */
/* Called or executed from: AMONNETV, AMONTSO */
/* */
/* The procedure "nowok" is called whenever the controlling LU has */
/* previously seen one of its monitoring LUs as inactive, but now */
/* sees it has regained activity. It’s "now okay", hence the name. */
/* The controlling LU calling this procedure passes it two */
/* parameters: the terminal type (via "termtype") and the amount of */
/* time the controlling LU should wait before returning to the */
/* procedure "amonnetv" or "amontso". */
/*---*/

nowok: msgtxt
/*--*/
/* A select group is used to determine what kind of */
/* terminal type is now okay. When the condition is */
/* met, the system availability counter is incremented */
/* by the 3 minutes that have expired, the "still-active" */
/* switch is turned off, and a special message is issued. */
/* The LU is then suspended for the period of time */
/* specified in the parameter passed to this procedure. */
/*--*/
select
when termtype=’netview’ |,

termtype=’NetView’ |,
termtype=’NETVIEW’ then

do
/*---*/

Chapter 25. AVMON example 371

/* NetView terminal now okay */
/*---*/
netview_availability=netview_availability+3
netview_still_active=off
call reftime
temp=’NetView term’,

id_token,
’responding again’,
time_of_day

queue=queue||hex(length(temp),2)||temp
end

when termtype=’tso’ | termtype=’TSO’ then
do
/*---*/
/* TSO terminal now okay */
/*---*/
tso_availability=tso_availability+3
tso_still_active=off
call reftime
temp=’TSO term’ id_token ’responding again’,

time_of_day
queue=queue||hex(length(temp),2)||temp
end

otherwise
do
/*---*/
/* Terminal type now known to this procedure */
/*---*/
temp=’Undefined NOWOK termtype:’ termtype
queue=queue||hex(length(temp),2)||temp
end
end
signal ’SPECMSG’
suspend(terminal_suspend_time)
return
endtxt

CLEARIT
/*---*/
/* Procedure Name: CLEARIT */
/* Used by: TSO monitoring LUs */
/* Called or executed from: ALOGTSO, ACHKTSO */
/* */
/* The procedure "clearit" simply clears the display screen. */
/*---*/

clearit: msgtxt
transmit using clear
return
endtxt

ATTNKEY
/*---*/
/* Procedure Name: ATTNKEY */
/* Used by: TSO monitoring LUs */
/* Called or executed from: ACHKTSO */
/* */
/* The procedure "attnkey" simply simulates the attention key, then */
/* waits for the receipt of "ready" from TSO. When "ready" is */
/* received, the terminal is active again and the switch indicating */
/* the TSO terminal has recovered is turned on. */
/*---*/

attnkey: msgtxt

372 Creating Workload Simulator Scripts

snacmnd(signal,’00010000’x)
wait until onin index(ru,’READY’)>0
tso_recovered=on
return
endtxt

PARSPROC
/*---*/
/* Procedure Name: PARSPROC */
/* Used by: NETVCTRL, TSOCTRL, NetView monitors, TSO monitors */
/* Called or executed from: AMONNETV, ALOGNETV, AMONTSO, ALOGTSO */
/* */
/* The procedure "parsproc" receives a string taken from a table */
/* that contains the ID and the associated password. This procedure */
/* then strips each component, or token, from that string based on */
/* the delimiter, which is a comma. */
/*---*/

parsproc: msgtxt
id_token=substr(table_string,1,index(table_string,’,’)-1)
password_token=substr(table_string,index(table_string,’,’)+1,,

length(table_string))
return
endtxt

TIMER
/*---*/
/* Procedure Name: TIMER */
/* Used by: TSO monitoring LUs */
/* Called or executed from: ACHKTSO */
/* */
/* The procedure "timer" calculates the difference between a start */
/* time stamp and a stop time stamp. It receives "start" and "stop" */
/* from the calling procedure and calculates the difference, even */
/* if the time interval crossed minute, hour, or even day boundaries.*/
/* */
/* The input to this procedure is START and STOP, both with format */
/* HHMMSS. The output from this procedure is TOTAL_ELAPSED_SECONDS, */
/* which is the total number of seconds between START and STOP. */
/*---*/

timer: msgtxt
start_hr=e2d(substr(start,1,2),2)
start_min=e2d(substr(start,3,2),2)
start_sec=e2d(substr(start,5,2),2)
stop_hr=e2d(substr(stop,1,2),2)
stop_min=e2d(substr(stop,3,2),2)
stop_sec=e2d(substr(stop,5,2),2)

/*---*/
/* If the time interval crossed midnight then 24 must be */
/* added to the stop hour to allow for the later subtraction */
/* of START_HR from STOP_HR. */
/*---*/
if stop_hr<start_hr then

stop_hr=stop_hr+24
else

nop

/*---*/
/* If STOP_MIN is less than START_MIN (as would occur if the */
/* time interval crossed an hour) then 1 hour must be */
/* borrowed from STOP_HR and 60 minutes carried to STOP_MIN. */
/*---*/
if stop_min<start_min then

do
stop_hr=stop_hr-1

Chapter 25. AVMON example 373

stop_min=stop_min+60
end

else
nop

/*---*/
/* If STOP_SEC is less than START_SEC (as would occur is the */
/* time interval crossed a minute) then 1 minute must be */
/* borrowed from STOP_MIN and 60 seconds carried to STOP_SEC.*/
/*---*/
if stop_sec<start_sec then

do
stop_min=stop_min-1
stop_sec=stop_sec+60
end

else
nop

/*---*/
/* Simple subtraction of the hours, minutes, and seconds is */
/* performed, then the total elapsed seconds is calculated. */
/*---*/
total_elapsed_seconds=((stop_hr-start_hr)*3600)+,

((stop_min-start_min)*60)+,
(stop_sec-start_sec)

return
endtxt

374 Creating Workload Simulator Scripts

Chapter 26. Loglist examples

This topic contains loglists for selected samples in this book. All of the loglists in
this topic were run with the RUN Loglist Utility command, unless otherwise
noted.

INSTALL1 loglist
Figure 39 contains a portion of a loglist for the INSTALL1 sample, described in
“WSim as a VTAM application (INSTALL1)” on page 281.

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

12021630 0096056 11000000 CNSL 0800 000000 75
Workload Simulator (WSim) VERSION 1, RELEASE 1.0

--
12033054 0096056 11000000 CNSL 0800 000000 10

I INSTALL1
--

12033159 0096056 11000000 CNSL 0800 000000 52
ITP029I INITIALIZATION COMPLETE FOR NETWORK INSTALL1

--
12034359 0096056 11000000 CNSL 0800 000000 1

S
--

12034700 0096056 11000000 CNSL 0800 000000 32
ITP006I NETWORK INSTALL1 STARTED

--
INSTALL1 WSIMAPPL WSIMLU-1 12034704 0096056 11000000 MTRC 0100 083060 53 E2 INSTMTXT 00 0

ITP447I MSG GEN ENTERED: STMT# 00001 OF DECK INSTMTXT
ITP448I MSG GEN ENDED: STMT# 00003 OF DECK INSTMTXT

--
INSTALL1 WSIMAPPL WSIMLU-1 12035300 12035587 12035294 +XMIT 8000 880020 34 E2 INSTMTXT 00 2

XMIT INITIATE SELF REQUEST
TH 2C0000010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=00 OAF=01 ODAI=0 SEQUENCE=1
RH 0B8000 REQUEST FM DATA-FM HEADER ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 01068101 C4F4C1F3 F2F7F8F2 F308C9E3 D7C5C3C8 D6400000 00 *..A.D4A327823.ITPECHO ... *

--
INSTALL1 WSIMAPPL WSIMLU-1 12035587 12035587 12035587 +RECV 8000 080020 12 E2 INSTMTXT 00 3

RECV INITIATE SELF RESPONSE
TH 2C0001000001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=00 ODAI=0 SEQUENCE=1
RH 8B8000 RESPONSE FM DATA-FM HEADER ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 010681 *..A *

--
INSTALL1 WSIMAPPL WSIMLU-1 12035587 0096056 11000000 MTRC 0100 083000 81 E2 INSTMTXT 00 4

ITP421I INPUT IF 0 (INSTMTXT 00001) NOT EVALUATED - NO SPECIFICATION MATCH
--
INSTALL1 WSIMAPPL WSIMLU-1 12035706 12035706 12035706 RECV 8000 080000 115 E2 INSTMTXT 00 5

RECV BIND SESSION REQUEST
TH 2D0001010000 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=0
RH 6B8000 REQUEST SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 31010303 B1903080 008087C7 80000200 00000000 18500000 7E000007 C9E3D7C5 *..........GG.........&;.=...ITPE*

00000020 C3C8D600 05000212 102008E6 E2C9D4C1 D7D7D360 12DF279F E4CFDE98 5409D5C5 *CHO........WSIMAPPL-....U..Q..NE*
00000040 E3C14BC1 F0F1D40E 0DF3D5C5 E3C14BC9 E3D7C5C3 C8D62C0A 01084040 40404040 *TA.A01M..3NETA.ITPECHO.... *
00000060 40402D09 08C4F4C1 F3F2F7F8 F2 * ...D4A32782 *

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

BIND SESSION FORMAT 0 TYPE=NON-NEGOTIABLE FM PROFILE 3 TS PROFILE 3
PRIMARY PROTOCOLS: RU CHAINING=MULTIPLE REQUEST MODE=IMMEDIATE RESPONSE REQUESTED=DEF OR EXC END BRACKET SENT
SECONDARY PROTOCOLS: RU CHAINING=MULTIPLE REQUEST MODE=IMMEDIATE RESPONSE REQUESTED=EXCEPTION END BRACKET NOT SENT
COMMON PROTOCOLS: SEGMENTS SUPPORTED FM HEADERS NOT ALLOWED BRACKETS RESET BETB BRACKET TERMINATION RULE 1

ALTERNATE CODE SET NOT USED HALF-DUPLEX FLIP-FLOP RECOVERY RESPONSIBILITY=PRIMARY
CONTENTION WINNER=SECONDARY

SECONDARY SEND PACING COUNT=NONE SECONDARY RECEIVE PACING COUNT=NONE ADAPTIVE SESSION PACING SUPPORTED
SECONDARY MAXIMUM RU SEND SIZE=1024 PRIMARY MAXIMUM RU SEND SIZE=1536
PRIMARY SEND PACING COUNT=NONE PRIMARY RECEIVE PACING COUNT=NONE
LU TYPE 2 DEFAULT SCREEN SIZE=024,080 ALTERNATE SCREEN SIZE=NONE
PRIMARY LU NAME=ITPECHO CRYPTOGRAPHIC FIELD=NONE
URC=0002121020

--
INSTALL1 WSIMAPPL WSIMLU-1 12035706 0096056 11000000 MTRC 0100 083000 74 E2 INSTMTXT 00 6

ITP429I INPUT IF 0 (INSTMTXT 00001) NOT MET - ELSE ACTION NOT CODED
--
INSTALL1 WSIMAPPL WSIMLU-1 12035725 12035768 12035706 XMIT 8000 880000 10 E2 INSTMTXT 00 7

XMIT BIND SESSION RESPONSE
TH 2D0001010000 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=0
RH EB8000 RESPONSE SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 31 *. *

--
INSTALL1 WSIMAPPL WSIMLU-1 12035775 12035775 12035775 RECV 8000 080000 10 E2 INSTMTXT 00 8

RECV START DATA TRAFFIC REQUEST
TH 2D0001010078 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=120
RH 6B8000 REQUEST SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU A0 *. *

Figure 39. INSTALL1 loglist output

© Copyright IBM Corp. 1989, 2015 375

--
INSTALL1 WSIMAPPL WSIMLU-1 12035775 0096056 11000000 MTRC 0100 083000 74 E2 INSTMTXT 00 9

ITP429I INPUT IF 0 (INSTMTXT 00001) NOT MET - ELSE ACTION NOT CODED

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

INSTALL1 WSIMAPPL WSIMLU-1 12035775 0096056 11000000 DSPY 0200 080060 2236 E2 INSTMTXT 00 0
1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| | 1
2| | 2
3| | 3
4| | 4
5| | 5
6| | 6
7| | 7
8| | 8
9| | 9

10| |10
11| |11
12| |12
13| |13
14| |14
15| |15
16| |16
17| |17
18| |18
19| |19
20| |20
21| |21
22| |22
23| |23
24| |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(1) COLUMN(1) AID: NULL DISPLAY AID WHEN LOGGED: BEGINNING OF MSG GEN
DIMENSIONS: (24, 80)

--
INSTALL1 WSIMAPPL WSIMLU-1 12035775 0096056 11000000 MTRC 0100 083060 53 E2 INSTMTXT 00 11

ITP447I MSG GEN ENTERED: STMT# 00003 OF DECK INSTMTXT
ITP450I BRANCH FROM STMT# 00003 OF DECK INSTMTXT TO STAY AT 00001 OF DECK INSTMTXT
ITP448I MSG GEN ENDED: STMT# 00003 OF DECK INSTMTXT

--
INSTALL1 WSIMAPPL WSIMLU-1 12035775 12035818 12035775 XMIT 8000 880000 10 E2 INSTMTXT 00 14

XMIT START DATA TRAFFIC RESPONSE
TH 2D0001010078 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=120
RH EB8000 RESPONSE SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU A0 *. *

--
INSTALL1 WSIMAPPL WSIMLU-1 12035824 12035825 12035825 RECV 8000 080000 134 E2 INSTMTXT 00 15

RECV (DATA) REQUEST
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 0390C0 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP BEGIN-END BRACKET
RU F5C7114E 7F1D68E6 C5D3C3D6 D4C540E3 D640C9E3 D7C5C3C8 D64B1D60 40C5D5E3 *5G.+"..WELCOME TO ITPECHO..- ENT*

00000020 C5D97EC5 C3C8D640 4040C3D3 C5C1D97E D9C5E2E3 D6D9C540 4040F561 F67EE2E3 *ER=ECHO CLEAR=RESTORE 5/6=ST*
00000040 D9C9D5C7 40D9C5D7 C5C1E340 4040F97E D9C5D7C5 C1E31150 50C5D5E3 C5D940C4 *RING REPEAT 9=REPEAT.&&ENTER D*
00000060 C1E3C140 E3D640C5 C3C8D640 C2C5D3D6 E67A11D1 5F1D4013 115D7F1D F0 *ATA TO ECHO BELOW:.J–. ..)".0 *

--
INSTALL1 WSIMAPPL WSIMLU-1 12035825 0096056 11000000 MTRC 0100 083000 130 E2 INSTMTXT 00 16

ITP427I INPUT IF 0 (INSTMTXT 00001) MET - THEN ACTION TAKEN: BRANCH FROM 00003 OF INSTMTXT TO GO AT 00004 OF INSTMTXT

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

INSTALL1 WSIMAPPL WSIMLU-1 12040288 0096056 11000000 DSPY 0200 080060 2236 E2 INSTMTXT 00 1
1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| | 1
2| | 2
3| | 3
4| | 4
5| | 5
6| | 6
7| | 7
8| | 8
9| | 9

10| |10
11| |11
12| |12
13|WELCOME TO ITPECHO. ENTER=ECHO CLEAR=RESTORE 5/6=STRING REPEAT 9=REPEAT |13
14|ENTER DATA TO ECHO BELOW: |14
15| |15
16| |16
17| |17
18| |18
19| |19
20| |20
21| |21
22| |22
23| |23
24| |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(15) COLUMN(1) AID: NULL DISPLAY AID WHEN LOGGED: BEGINNING OF MSG GEN
DIMENSIONS: (24, 80)

--
INSTALL1 WSIMAPPL WSIMLU-1 12040288 0096056 11000000 MTRC 0100 083060 53 E2 INSTMTXT 00 18

ITP447I MSG GEN ENTERED: STMT# 00004 OF DECK INSTMTXT
--

12040288 0096056 11000000 CNSL 0800 000000 58
ITP137I INSTALL1 WSIMLU -00001 - NOW LOGGED ON TO ITPECHO

--
INSTALL1 WSIMAPPL WSIMLU-1 12040288 0096056 11000000 MTRC 0100 083020 53 E2 INSTMTXT 00 19

ITP448I MSG GEN ENDED: STMT# 00009 OF DECK INSTMTXT

376 Creating Workload Simulator Scripts

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

INSTALL1 WSIMAPPL WSIMLU-1 12040288 0096056 11000000 DSPY 0200 080040 24 E2 INSTMTXT 00 2
1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1| | 1
2| | 2
3| | 3
4| | 4
5| | 5
6| | 6
7| | 7
8| | 8
9| | 9

10| |10
11| |11
12| |12
13|WELCOME TO ITPECHO. ENTER=ECHO CLEAR=RESTORE 5/6=STRING REPEAT 9=REPEAT |13
14|ENTER DATA TO ECHO BELOW: |14
15|THIS IS A SIMPLE MESSAGE |15
16| |16
17| |17
18| |18
19| |19
20| |20
21| |21
22| |22
23| |23
24| |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(15) COLUMN(25) AID: ENTER KEY WHEN LOGGED: END OF MSG GEN
DIMENSIONS: (24, 80)

--
INSTALL1 WSIMAPPL WSIMLU-1 12040363 12040398 12040288 XMIT 8000 880000 39 E2 INSTMTXT 00 21

XMIT (DATA) REQUEST
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 0390A0 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP BEGIN BRACKET

INDICATORS= CHANGE DIRECTION
RU 7DD1F811 D160E3C8 C9E240C9 E240C140 E2C9D4D7 D3C540D4 C5E2E2C1 C7C5 *’J8.J-THIS IS A SIMPLE MESSAGE *

--
INSTALL1 WSIMAPPL WSIMLU-1 12040403 12040403 12040403 RECV 8000 080000 52 E2 INSTMTXT 00 22

RECV (DATA) REQUEST
TH 2C0001010002 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=2
RH 039040 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP END BRACKET
RU F1C311D1 60131140 403C4E7F 00114040 124040E3 C8C9E240 C9E240C1 40E2C9D4 *1C.J-.. .+".. . THIS IS A SIM*

00000020 D7D3C540 D4C5E2E2 C1C7C5 *PLE MESSAGE *
--
INSTALL1 WSIMAPPL WSIMLU-1 12040403 0096056 11000000 MTRC 0100 083000 89 E2 INSTMTXT 00 23

ITP427I INPUT IF 1 (INSTMTXT 00006) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

INSTALL1 WSIMAPPL WSIMLU-1 12040906 0096056 11000000 DSPY 0200 080060 2236 E2 INSTMTXT 00 3
1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1|THIS IS A SIMPLE MESSAGE | 1
2| | 2
3| | 3
4| | 4
5| | 5
6| | 6
7| | 7
8| | 8
9| | 9

10| |10
11| |11
12| |12
13|WELCOME TO ITPECHO. ENTER=ECHO CLEAR=RESTORE 5/6=STRING REPEAT 9=REPEAT |13
14|ENTER DATA TO ECHO BELOW: |14
15| |15
16| |16
17| |17
18| |18
19| |19
20| |20
21| |21
22| |22
23| |23
24| |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(15) COLUMN(1) AID: NULL DISPLAY AID WHEN LOGGED: BEGINNING OF MSG GEN
DIMENSIONS: (24, 80)

--
INSTALL1 WSIMAPPL WSIMLU-1 12040906 0096056 11000000 MTRC 0100 083060 53 E2 INSTMTXT 00 25

ITP447I MSG GEN ENTERED: STMT# 00009 OF DECK INSTMTXT
ITP448I MSG GEN ENDED: STMT# 00013 OF DECK INSTMTXT

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

INSTALL1 WSIMAPPL WSIMLU-1 12040906 0096056 11000000 DSPY 0200 080060 2236 E2 INSTMTXT 00 4
1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1|THIS IS A SIMPLE MESSAGE | 1
2| | 2
3| | 3
4| | 4
5| | 5
6| | 6
7| | 7
8| | 8

Chapter 26. Loglist examples 377

9| | 9
10| |10
11| |11
12| |12
13|WELCOME TO ITPECHO. ENTER=ECHO CLEAR=RESTORE 5/6=STRING REPEAT 9=REPEAT |13
14|ENTER DATA TO ECHO BELOW: |14
15|THIS IS A 50 CHARACTER MESSAGE |15
16| |16
17| |17
18| |18
19| |19
20| |20
21| |21
22| |22
23| |23
24| |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(15) COLUMN(51) AID: ENTER KEY WHEN LOGGED: END OF MSG GEN
DIMENSIONS: (24, 80)

--
INSTALL1 WSIMAPPL WSIMLU-1 12040913 12040921 12040906 XMIT 8000 880000 65 E2 INSTMTXT 00 28

XMIT (DATA) REQUEST
TH 2C0001010002 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=2
RH 0390A0 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP BEGIN BRACKET

INDICATORS= CHANGE DIRECTION
RU 7DD2D211 D160E3C8 C9E240C9 E240C140 F5F040C3 C8C1D9C1 C3E3C5D9 40D4C5E2 *’KK.J-THIS IS A 50 CHARACTER MES*

00000020 E2C1C7C5 40404040 40404040 40404040 40404040 40404040 *SAGE *
--
INSTALL1 WSIMAPPL WSIMLU-1 12040921 12040921 12040921 RECV 8000 080000 78 E2 INSTMTXT 00 29

RECV (DATA) REQUEST
TH 2C0001010003 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=3
RH 039040 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP END BRACKET
RU F1C311D1 60131140 403C4E7F 00114040 124040E3 C8C9E240 C9E240C1 40F5F040 *1C.J-.. .+".. . THIS IS A 50 *

00000020 C3C8C1D9 C1C3E3C5 D940D4C5 E2E2C1C7 C5404040 40404040 40404040 40404040 *CHARACTER MESSAGE *
00000040 40404040 40 * *

--
INSTALL1 WSIMAPPL WSIMLU-1 12040921 0096056 11000000 MTRC 0100 083000 89 E2 INSTMTXT 00 30

ITP427I INPUT IF 2 (INSTMTXT 00010) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

INSTALL1 WSIMAPPL WSIMLU-1 12041423 0096056 11000000 DSPY 0200 080060 2236 E2 INSTMTXT 00 5
1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1|THIS IS A 50 CHARACTER MESSAGE | 1
2| | 2
3| | 3
4| | 4
5| | 5
6| | 6
7| | 7
8| | 8
9| | 9

10| |10
11| |11
12| |12
13|WELCOME TO ITPECHO. ENTER=ECHO CLEAR=RESTORE 5/6=STRING REPEAT 9=REPEAT |13
14|ENTER DATA TO ECHO BELOW: |14
15| |15
16| |16
17| |17
18| |18
19| |19
20| |20
21| |21
22| |22
23| |23
24| |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(15) COLUMN(1) AID: NULL DISPLAY AID WHEN LOGGED: BEGINNING OF MSG GEN
DIMENSIONS: (24, 80)

--
INSTALL1 WSIMAPPL WSIMLU-1 12041423 0096056 11000000 MTRC 0100 083060 53 E2 INSTMTXT 00 32

ITP447I MSG GEN ENTERED: STMT# 00013 OF DECK INSTMTXT
ITP448I MSG GEN ENDED: STMT# 00017 OF DECK INSTMTXT

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

INSTALL1 WSIMAPPL WSIMLU-1 12041423 0096056 11000000 DSPY 0200 080060 2236 E2 INSTMTXT 00 6
1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1|THIS IS A 50 CHARACTER MESSAGE | 1
2| | 2
3| | 3
4| | 4
5| | 5
6| | 6
7| | 7
8| | 8
9| | 9

10| |10
11| |11
12| |12
13|WELCOME TO ITPECHO. ENTER=ECHO CLEAR=RESTORE 5/6=STRING REPEAT 9=REPEAT |13
14|ENTER DATA TO ECHO BELOW: |14
15|THIS IS A 200 CHARACTER MESSAGE |15
16| |16
17| |17
18| |18
19| |19
20| |20

378 Creating Workload Simulator Scripts

21| |21
22| |22
23| |23
24| |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(17) COLUMN(41) AID: ENTER KEY WHEN LOGGED: END OF MSG GEN
DIMENSIONS: (24, 80)

--
INSTALL1 WSIMAPPL WSIMLU-1 12041424 12041432 12041423 XMIT 8000 880000 215 E2 INSTMTXT 00 35

XMIT (DATA) REQUEST
TH 2C0001010003 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=3
RH 0390A0 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP BEGIN BRACKET

INDICATORS= CHANGE DIRECTION
RU 7DD4E811 D160E3C8 C9E240C9 E240C140 F2F0F040 C3C8C1D9 C1C3E3C5 D940D4C5 *’MY.J-THIS IS A 200 CHARACTER ME*

00000020 E2E2C1C7 C5404040 40404040 40404040 40404040 40404040 40404040 40404040 *SSAGE *
00000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

TO NEXT LINE SAME AS ABOVE
000000C0 40404040 40404040 40404040 4040 * *

--
INSTALL1 WSIMAPPL WSIMLU-1 12041432 12041433 12041433 RECV 8000 080000 228 E2 INSTMTXT 00 36

RECV (DATA) REQUEST
TH 2C0001010004 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=4
RH 039040 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP END BRACKET
RU F1C311D1 60131140 403C4E7F 00114040 124040E3 C8C9E240 C9E240C1 40F2F0F0 *1C.J-.. .+".. . THIS IS A 200*

00000020 40C3C8C1 D9C1C3E3 C5D940D4 C5E2E2C1 C7C54040 40404040 40404040 40404040 * CHARACTER MESSAGE *
00000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

TO NEXT LINE SAME AS ABOVE
000000C0 40404040 40404040 40404040 40404040 40404040 40404040 404040 * *

--
INSTALL1 WSIMAPPL WSIMLU-1 12041433 0096056 11000000 MTRC 0100 083000 89 E2 INSTMTXT 00 37

ITP427I INPUT IF 3 (INSTMTXT 00014) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)
--
INSTALL1 12041921 0096056 11000000 MARK 1000 000000 0

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

INSTALL1 WSIMAPPL WSIMLU-1 12041941 0096056 11000000 DSPY 0200 080060 2236 E2 INSTMTXT 00 7
1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1|THIS IS A 200 CHARACTER MESSAGE | 1
2| | 2
3| | 3
4| | 4
5| | 5
6| | 6
7| | 7
8| | 8
9| | 9

10| |10
11| |11
12| |12
13|WELCOME TO ITPECHO. ENTER=ECHO CLEAR=RESTORE 5/6=STRING REPEAT 9=REPEAT |13
14|ENTER DATA TO ECHO BELOW: |14
15| |15
16| |16
17| |17
18| |18
19| |19
20| |20
21| |21
22| |22
23| |23
24| |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(15) COLUMN(1) AID: NULL DISPLAY AID WHEN LOGGED: BEGINNING OF MSG GEN
DIMENSIONS: (24, 80)

--
INSTALL1 WSIMAPPL WSIMLU-1 12041941 0096056 11000000 MTRC 0100 083060 53 E2 INSTMTXT 00 39

ITP447I MSG GEN ENTERED: STMT# 00017 OF DECK INSTMTXT
ITP448I MSG GEN ENDED: STMT# 00021 OF DECK INSTMTXT

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

INSTALL1 WSIMAPPL WSIMLU-1 12041941 0096056 11000000 DSPY 0200 080060 2236 E2 INSTMTXT 00 8
1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1|THIS IS A 200 CHARACTER MESSAGE | 1
2| | 2
3| | 3
4| | 4
5| | 5
6| | 6
7| | 7
8| | 8
9| | 9

10| |10
11| |11
12| |12
13|WELCOME TO ITPECHO. ENTER=ECHO CLEAR=RESTORE 5/6=STRING REPEAT 9=REPEAT |13
14|ENTER DATA TO ECHO BELOW: |14
15|10 |15
16| |16
17| |17
18| |18
19| |19
20| |20
21| |21
22| |22
23| |23
24| |24

--

Chapter 26. Loglist examples 379

12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

CURSOR: ROW(15) COLUMN(3) AID: PROGRAM FUNCTION 5 WHEN LOGGED: END OF MSG GEN
DIMENSIONS: (24, 80)

--
INSTALL1 WSIMAPPL WSIMLU-1 12041955 12041973 12041941 XMIT 8000 880000 17 E2 INSTMTXT 00 42

XMIT (DATA) REQUEST
TH 2C0001010004 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=4
RH 0390A0 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP BEGIN BRACKET

INDICATORS= CHANGE DIRECTION
RU F5D1E211 D160F1F0 *5JS.J-10 *

--
INSTALL1 WSIMAPPL WSIMLU-1 12041973 12041973 12041973 RECV 8000 080000 38 E2 INSTMTXT 00 43

RECV (DATA) REQUEST
TH 2C0001010005 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=5
RH 039040 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP END BRACKET
RU F1C311D1 60131140 403C4E7F 00114040 124040C1 C2C3C4C5 C6C7C8C9 D1 *1C.J-.. .+".. . ABCDEFGHIJ *

--
INSTALL1 WSIMAPPL WSIMLU-1 12041973 0096056 11000000 MTRC 0100 083000 89 E2 INSTMTXT 00 44

ITP427I INPUT IF 4 (INSTMTXT 00018) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

INSTALL1 WSIMAPPL WSIMLU-1 12042475 0096056 11000000 DSPY 0200 080060 2236 E2 INSTMTXT 00 9
1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890
--

1|ABCDEFGHIJ | 1
2| | 2
3| | 3
4| | 4
5| | 5
6| | 6
7| | 7
8| | 8
9| | 9

10| |10
11| |11
12| |12
13|WELCOME TO ITPECHO. ENTER=ECHO CLEAR=RESTORE 5/6=STRING REPEAT 9=REPEAT |13
14|ENTER DATA TO ECHO BELOW: |14
15| |15
16| |16
17| |17
18| |18
19| |19
20| |20
21| |21
22| |22
23| |23
24| |24

--
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 2 3 4 5 6 7 8
CURSOR: ROW(15) COLUMN(1) AID: NULL DISPLAY AID WHEN LOGGED: BEGINNING OF MSG GEN
DIMENSIONS: (24, 80)

--
INSTALL1 WSIMAPPL WSIMLU-1 12042475 0096056 11000000 MTRC 0100 083060 53 E2 INSTMTXT 00 46

ITP447I MSG GEN ENTERED: STMT# 00021 OF DECK INSTMTXT
ITP448I MSG GEN ENDED: STMT# 00025 OF DECK INSTMTXT

WSIM application loglist
Figure 40 contains a portion of a loglist used to run the sample WSim application,
described in “WSim as an application” on page 289.

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

15422703 0096058 11000000 CNSL 0800 000000 75
Workload Simulator (WSim) VERSION 1, RELEASE 1.0

--
15424097 0096058 11000000 CNSL 0800 000000 10

I ECHO,S,L
--

15425737 0096058 11000000 CNSL 0800 000000 48
ITP029I INITIALIZATION COMPLETE FOR NETWORK ECHO

--
15425941 0096058 11000000 CNSL 0800 000000 28

ITP006I NETWORK ECHO STARTED
--
ECHO 15432704 0096058 11000000 MARK 1000 000000 0
--
ECHO 15442705 0096058 11000000 MARK 1000 000000 0
--
ECHO VA1 PLU-1 15444522 15444522 15444522 RECV 8000 080000 227 E0 PLUECHO 00 0

RECV CONTROL INITIATE REQUEST
TH 2D0001000000 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=00 ODAI=0 SEQUENCE=0
RH 0B8000 REQUEST FM DATA-FM HEADER ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 81060100 0A000000 0000002A 010303B1 90308000 0087C780 00020000 00000018 *A....................GG.........*

00000020 5000007E 000008E6 E2C9D4C1 D7D7D300 05000212 1020F305 E6E2C9D4 F1000000 *&;.=...WSIMAPPL.......3.WSIM1...*
00000040 000E01C0 6D000000 80000018 5000007E 000D24C4 F4C1F3F2 F7F8F240 40404040 *...._.......&;.=...D4A32782 *
00000060 40404013 00010800 00010002 00030004 00050006 00070015 14000000 01000A00 **
00000080 00000101 04D5C5E3 C1404040 400E0EF3 D5C5E3C1 E6E2C9D4 D4C1D7D7 D30E0BF3 *.....NETA ..3NETA.WSIMAPPL..3*
000000A0 D5C5E3C1 E6E2C9D4 D4F12C0A 01084040 40404040 40402D09 08C4F4C1 F3F2F7F8 *NETA.WSIM1.... ...D4A3278*
000000C0 F26012DF 279FE4D0 3AB51409 D5C5E3C1 4BC1F0F1 D42F0303 8000 *2-....U.....NETA.A01M..... *

--

Figure 40. WSim Application loglist output

380 Creating Workload Simulator Scripts

ECHO VA1 PLU-1 15444566 15444566 15444522 +XMIT 8000 880020 14 E0 PLUECHO 00 1
XMIT CONTROL INITIATE RESPONSE

TH 2D0000010000 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=00 OAF=01 ODAI=0 SEQUENCE=0
RH 8B8000 RESPONSE FM DATA-FM HEADER ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 810601FE 00 *A.... *

--
ECHO VA1 PLU-1 15444567 15444840 15444522 XMIT 8000 880000 53 E0 PLUECHO 00 2

XMIT BIND SESSION REQUEST
TH 2D0001010001 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 6B8000 REQUEST SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 31010303 B1903080 000087C7 80000200 00000000 18500000 7E000008 E6E2C9D4 *..........GG.........&;.=...WSIM*

00000020 C1D7D7D3 00050002 12102000 *APPL........ *
BIND SESSION FORMAT 0 TYPE=NON-NEGOTIABLE FM PROFILE 3 TS PROFILE 3

PRIMARY PROTOCOLS: RU CHAINING=MULTIPLE REQUEST MODE=IMMEDIATE RESPONSE REQUESTED=DEF OR EXC END BRACKET SENT
SECONDARY PROTOCOLS: RU CHAINING=MULTIPLE REQUEST MODE=IMMEDIATE RESPONSE REQUESTED=EXCEPTION END BRACKET NOT SENT
COMMON PROTOCOLS: SEGMENTS SUPPORTED FM HEADERS NOT ALLOWED BRACKETS RESET BETB BRACKET TERMINATION RULE 1

ALTERNATE CODE SET NOT USED HALF-DUPLEX FLIP-FLOP RECOVERY RESPONSIBILITY=PRIMARY
CONTENTION WINNER=SECONDARY

SECONDARY SEND PACING COUNT=NONE SECONDARY RECEIVE PACING COUNT=NONE ADAPTIVE SESSION PACING NOT SUPPORTED

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

SECONDARY MAXIMUM RU SEND SIZE=1024 PRIMARY MAXIMUM RU SEND SIZE=1536
PRIMARY SEND PACING COUNT=NONE PRIMARY RECEIVE PACING COUNT=NONE
LU TYPE 2 DEFAULT SCREEN SIZE=024,080 ALTERNATE SCREEN SIZE=NONE
PRIMARY LU NAME=WSIMAPPL CRYPTOGRAPHIC FIELD=NONE
URC=0002121020

--
ECHO VA1 PLU-1 15444840 15444840 15444840 RECV 8000 080000 10 E0 PLUECHO 00 3

RECV BIND SESSION RESPONSE
TH 2D0001010001 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH EB8000 RESPONSE SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 31 *. *

--
ECHO VA1 PLU-1 15444848 15444861 15444840 XMIT 8000 880000 10 E0 PLUECHO 00 4

XMIT START DATA TRAFFIC REQUEST
TH 2D000101008E FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=142
RH 6B8000 REQUEST SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU A0 *. *

--
ECHO VA1 PLU-1 15444861 15444861 15444861 RECV 8000 080000 10 E0 PLUECHO 00 5

RECV START DATA TRAFFIC RESPONSE
TH 2D000101008E FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=142
RH EB8000 RESPONSE SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU A0 *. *

--
ECHO VA1 PLU-1 15444861 0096058 11000000 MTRC 0100 083060 53 E0 PLUECHO 00 6

ITP447I MSG GEN ENTERED: STMT# 00001 OF DECK PLUECHO
ITP429I IMMEDIATE IF (PLUECHO 00001) NOT MET - ELSE ACTION NOT CODED
ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO
ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO
ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO
ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO
ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO
ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO
ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO
ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO
ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO
ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO

--
ECHO VA1 PLU-1 15444861 0096058 11000000 INFO 4000 082000 67 E0 PLUECHO 00 18

ITP410I DATASAVE LENGTH ERROR, DATA MAY BE TRUNCATED IN SAVEAREA N1
--
ECHO VA1 PLU-1 15444861 0096058 11000000 MTRC 0100 083020 130 E0 PLUECHO 00 19

ITP427I IMMEDIATE IF (PLUECHO 00006) MET - THEN ACTION TAKEN: BRANCH FROM 00007 OF PLUECHO TO BUILDN1 AT 00004 OF PLUECHO
ITP429I IMMEDIATE IF (PLUECHO 00006) NOT MET - ELSE ACTION NOT CODED
ITP451I CALL FROM STMT# 00008 OF DECK PLUECHO TO THE BEGINNING OF DECK FIRSTMSG
ITP448I MSG GEN ENDED: STMT# 00001 OF DECK FIRSTMSG

--
ECHO VA1 PLU-1 15444931 0096058 11000000 MTRC 0100 083060 53 E0 FIRSTMSG 00 23

ITP447I MSG GEN ENTERED: STMT# 00001 OF DECK FIRSTMSG
ITP452I RETURN FROM STMT# 00002 OF DECK FIRSTMSG TO STMT# 00009 OF DECK PLUECHO

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

ECHO VA1 PLU-1 15444931 0096058 11000000 INFO 4000 082000 42 E0 PLUECHO 00 25
ITP407I RECALL SAVEAREA 1 CONTAINS NO DATA

--
ECHO VA1 PLU-1 15444931 0096058 11000000 MTRC 0100 083020 53 E0 PLUECHO 00 26

ITP448I MSG GEN ENDED: STMT# 00014 OF DECK PLUECHO
--
ECHO VA1 PLU-1 15444938 15444938 15444931 XMIT 8000 880000 130 E0 PLUECHO 00 27

XMIT (DATA) REQUEST
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 0380A0 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=DEF1 BEGIN BRACKET

INDICATORS= CHANGE DIRECTION
RU F5C7114E 7F1DF8E6 C5D3C3D6 D4C540E3 D640C9E3 D7C5C3C8 D64B1D60 40C5D5E3 *5G.+".8WELCOME TO ITPECHO..- ENT*

00000020 C5D97EC5 C3C8D640 4040C3D3 C5C1D97E D9C5E2E3 D6D9C540 4040F57E E2E3D9C9 *ER=ECHO CLEAR=RESTORE 5=STRI*
00000040 D5C740D9 C5D7E340 4040F97E D9C5D7C5 C1E31150 50C5D5E3 C5D940C4 C1E3C140 *NG REPT 9=REPEAT.&&ENTER DATA *
00000060 E3D640C5 C3C8D640 C2C5D3D6 E67A11D1 5F1D4013 115D7F1D F0 *TO ECHO BELOW:.J–. ..)".0 *

--
ECHO VA1 PLU-1 15444956 15444956 15444956 RECV 8000 080000 9 E0 PLUECHO 00 28

RECV RESPONSE
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 838000 RESPONSE FM DATA ONLY IN CHAIN RESPONSE TYPE=DEF1

--
ECHO VA1 PLU-1 15444956 0096058 11000000 MTRC 0100 083000 88 E0 PLUECHO 00 29

ITP423I INPUT IF 0 (PLUECHO 00009) NOT EVALUATED - START OF TEST NOT WITHIN DATA
ITP423I INPUT IF 1 (PLUECHO 00010) NOT EVALUATED - START OF TEST NOT WITHIN DATA

--
ECHO VA1 PLU-1 15445369 15445370 15445370 RECV 8000 080000 39 E0 PLUECHO 00 31

RECV (DATA) REQUEST
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 039020 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP

INDICATORS= CHANGE DIRECTION
RU 7DD1F811 D160E3C8 C9E240C9 E240C140 E2C9D4D7 D3C540D4 C5E2E2C1 C7C5 *’J8.J-THIS IS A SIMPLE MESSAGE *

--

Chapter 26. Loglist examples 381

ECHO VA1 PLU-1 15445370 0096058 11000000 MTRC 0100 083000 108 E0 PLUECHO 00 32
ITP427I INPUT IF 0 (PLUECHO 00009) MET - THEN ACTION TAKEN: EXECUTED SAVERU FROM THE BEGINNING

--
ECHO VA1 PLU-1 15445370 0096058 11000000 INFO 4000 082000 42 E0 SAVERU 00 33

ITP407I RECALL SAVEAREA 1 CONTAINS NO DATA
--
ECHO VA1 PLU-1 15445370 0096058 11000000 MTRC 0100 083000 84 E0 PLUECHO 00 34

ITP432I INPUT IF 0 (PLUECHO 00009) EXECUTE ACTION ENDED AT 00004 OF SAVERU
ITP427I INPUT IF 1 (PLUECHO 00010) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

--
ECHO VA1 PLU-1 15445371 0096058 11000000 MTRC 0100 083060 53 E0 PLUECHO 00 36

ITP447I MSG GEN ENTERED: STMT# 00014 OF DECK PLUECHO

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER
ITP429I IMMEDIATE IF (PLUECHO 00014) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00015) NOT MET - ELSE ACTION NOT CODED
ITP450I BRANCH FROM STMT# 00016 OF DECK PLUECHO TO NOTPF9 AT 00018 OF DECK PLUECHO
ITP429I IMMEDIATE IF (PLUECHO 00018) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00019) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00020) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00021) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00022) NOT MET - ELSE ACTION NOT CODED
ITP450I BRANCH FROM STMT# 00024 OF DECK PLUECHO TO ECHOLOOP AT 00011 OF DECK PLUECHO
ITP448I MSG GEN ENDED: STMT# 00014 OF DECK PLUECHO

--
ECHO VA1 PLU-1 15445378 15445378 15444938 XMIT 8000 880000 52 E0 PLUECHO 00 47

XMIT (DATA) REQUEST
TH 2C0001010002 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=2
RH 039020 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP

INDICATORS= CHANGE DIRECTION
RU F1C311D1 60131140 403C4E7F 00114040 124040E3 C8C9E240 C9E240C1 40E2C9D4 *1C.J-.. .+".. . THIS IS A SIM*

00000020 D7D3C540 D4C5E2E2 C1C7C5 *PLE MESSAGE *
--
ECHO VA1 PLU-1 15445900 15445900 15445900 RECV 8000 080000 65 E0 PLUECHO 00 48

RECV (DATA) REQUEST
TH 2C0001010002 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=2
RH 039020 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP

INDICATORS= CHANGE DIRECTION
RU 7DD2D211 D160E3C8 C9E240C9 E240C140 F5F040C3 C8C1D9C1 C3E3C5D9 40D4C5E2 *’KK.J-THIS IS A 50 CHARACTER MES*

00000020 E2C1C7C5 40404040 40404040 40404040 40404040 40404040 *SAGE *
--
ECHO VA1 PLU-1 15445900 0096058 11000000 MTRC 0100 083000 108 E0 PLUECHO 00 49

ITP427I INPUT IF 0 (PLUECHO 00009) MET - THEN ACTION TAKEN: EXECUTED SAVERU FROM THE BEGINNING
--
ECHO VA1 PLU-1 15445900 0096058 11000000 INFO 4000 082000 42 E0 SAVERU 00 50

ITP407I RECALL SAVEAREA 1 CONTAINS NO DATA
--
ECHO VA1 PLU-1 15445900 0096058 11000000 MTRC 0100 083000 84 E0 PLUECHO 00 51

ITP432I INPUT IF 0 (PLUECHO 00009) EXECUTE ACTION ENDED AT 00004 OF SAVERU
ITP427I INPUT IF 1 (PLUECHO 00010) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

--
ECHO VA1 PLU-1 15445900 0096058 11000000 MTRC 0100 083060 53 E0 PLUECHO 00 53

ITP447I MSG GEN ENTERED: STMT# 00014 OF DECK PLUECHO
ITP429I IMMEDIATE IF (PLUECHO 00014) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00015) NOT MET - ELSE ACTION NOT CODED
ITP450I BRANCH FROM STMT# 00016 OF DECK PLUECHO TO NOTPF9 AT 00018 OF DECK PLUECHO
ITP429I IMMEDIATE IF (PLUECHO 00018) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00019) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00020) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00021) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00022) NOT MET - ELSE ACTION NOT CODED
ITP450I BRANCH FROM STMT# 00024 OF DECK PLUECHO TO ECHOLOOP AT 00011 OF DECK PLUECHO
ITP448I MSG GEN ENDED: STMT# 00014 OF DECK PLUECHO

--

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

ECHO VA1 PLU-1 15445902 15445907 15445378 XMIT 8000 880000 78 E0 PLUECHO 00 64
XMIT (DATA) REQUEST

TH 2C0001010003 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=3
RH 039020 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP

INDICATORS= CHANGE DIRECTION
RU F1C311D1 60131140 403C4E7F 00114040 124040E3 C8C9E240 C9E240C1 40F5F040 *1C.J-.. .+".. . THIS IS A 50 *

00000020 C3C8C1D9 C1C3E3C5 D940D4C5 E2E2C1C7 C5404040 40404040 40404040 40404040 *CHARACTER MESSAGE *
00000040 40404040 40 * *

--
ECHO VA1 PLU-1 15450418 15450419 15450419 RECV 8000 080000 215 E0 PLUECHO 00 65

RECV (DATA) REQUEST
TH 2C0001010003 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=3
RH 039020 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP

INDICATORS= CHANGE DIRECTION
RU 7DD4E811 D160E3C8 C9E240C9 E240C140 F2F0F040 C3C8C1D9 C1C3E3C5 D940D4C5 *’MY.J-THIS IS A 200 CHARACTER ME*

00000020 E2E2C1C7 C5404040 40404040 40404040 40404040 40404040 40404040 40404040 *SSAGE *
00000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

TO NEXT LINE SAME AS ABOVE
000000C0 40404040 40404040 40404040 4040 * *

--
ECHO VA1 PLU-1 15450419 0096058 11000000 MTRC 0100 083000 108 E0 PLUECHO 00 66

ITP427I INPUT IF 0 (PLUECHO 00009) MET - THEN ACTION TAKEN: EXECUTED SAVERU FROM THE BEGINNING
--
ECHO VA1 PLU-1 15450419 0096058 11000000 INFO 4000 082000 42 E0 SAVERU 00 67

ITP407I RECALL SAVEAREA 1 CONTAINS NO DATA
--
ECHO VA1 PLU-1 15450419 0096058 11000000 MTRC 0100 083000 84 E0 PLUECHO 00 68

ITP432I INPUT IF 0 (PLUECHO 00009) EXECUTE ACTION ENDED AT 00004 OF SAVERU
ITP427I INPUT IF 1 (PLUECHO 00010) MET - THEN ACTION TAKEN: CONTINUE (RESET WAIT)

--
ECHO VA1 PLU-1 15450419 0096058 11000000 MTRC 0100 083060 53 E0 PLUECHO 00 70

ITP447I MSG GEN ENTERED: STMT# 00014 OF DECK PLUECHO
ITP429I IMMEDIATE IF (PLUECHO 00014) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00015) NOT MET - ELSE ACTION NOT CODED
ITP450I BRANCH FROM STMT# 00016 OF DECK PLUECHO TO NOTPF9 AT 00018 OF DECK PLUECHO
ITP429I IMMEDIATE IF (PLUECHO 00018) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00019) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00020) NOT MET - ELSE ACTION NOT CODED
ITP429I IMMEDIATE IF (PLUECHO 00021) NOT MET - ELSE ACTION NOT CODED

382 Creating Workload Simulator Scripts

ITP429I IMMEDIATE IF (PLUECHO 00022) NOT MET - ELSE ACTION NOT CODED
ITP450I BRANCH FROM STMT# 00024 OF DECK PLUECHO TO ECHOLOOP AT 00011 OF DECK PLUECHO
ITP448I MSG GEN ENDED: STMT# 00014 OF DECK PLUECHO

--
ECHO VA1 PLU-1 15450420 15450420 15445906 XMIT 8000 880000 228 E0 PLUECHO 00 81

XMIT (DATA) REQUEST
TH 2C0001010004 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=4
RH 039020 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP

INDICATORS= CHANGE DIRECTION
RU F1C311D1 60131140 403C4E7F 00114040 124040E3 C8C9E240 C9E240C1 40F2F0F0 *1C.J-.. .+".. . THIS IS A 200*

00000020 40C3C8C1 D9C1C3E3 C5D940D4 C5E2E2C1 C7C54040 40404040 40404040 40404040 * CHARACTER MESSAGE *
00000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *

TO NEXT LINE SAME AS ABOVE

CPI-C multiple-instance TP loglist
Figure 41 contains the complete loglist for the CPI-C example with
multiple-instance transaction programs, described in “CPI-C example with
multiple-instance transaction programs” on page 314.

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

12175906 0096141 11000000 CNSL 0800 000000 70
Workload Simulator (WSim) VERSION 1, RELEASE 1.0

--
12175910 0096141 11000000 CNSL 0800 000000 52

ITP029I INITIALIZATION COMPLETE FOR NETWORK CPICSMP2
--
CPICSMP2 APPCLUC TPCLIENT-1 12175911 0096141 11000000 CTRC 2000 043000 53 EA 00 0

ITP4020I EXECUTION BEGINS FOR CPI-C TP TPCLIENT-00001
--

12175911 0096141 11000000 CNSL 0800 000000 72
ITP137I CPICSMP2 TPCLIENT-00001 - Transaction Program TPCLIENT starting.

--
CPICSMP2 APPCLUC TPCLIENT-1 12175912 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 1
CPI-C VERB ISSUED: Conversation State = Reset

CMINIT(conversation_ID , (S1) <character output>
sym_dest_name , ’SERVER’ (S4) <character input >
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Initialize
CMINIT(conversation_ID , ’00000001’ (S1) <character output>

sym_dest_name , ’SERVER’ (S4) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

CPI-C VERB ISSUED: Conversation State = Initialize
CMSSL (conversation_ID , ’00000001’ (S1) <character input >

sync_level , CM_CONFIRM (DC23 = 1) <numeric input >
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Initialize
CMSSL (conversation_ID , ’00000001’ (S1) <character input >

sync_level , CM_CONFIRM (DC23 = 1) <numeric input >
return_code) CM_OK (DC15 = 0) <numeric output>

CPI-C VERB ISSUED: Conversation State = Initialize
CMALLC(conversation_ID , ’00000001’ (S1) <character input >

return_code) (DC15) <numeric output>
--
CPICSMP2 APPCLUC TPCLIENT-2 12175913 0096141 11000000 CTRC 2000 043000 53 EA 00 6

ITP4020I EXECUTION BEGINS FOR CPI-C TP TPCLIENT-00002
--

12175913 0096141 11000000 CNSL 0800 000000 72
ITP137I CPICSMP2 TPCLIENT-00002 - Transaction Program TPCLIENT starting.

--
CPICSMP2 APPCLUC TPCLIENT-2 12175913 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 7
CPI-C VERB ISSUED: Conversation State = Reset

CMINIT(conversation_ID , (S1) <character output>
sym_dest_name , ’SERVER’ (S4) <character input >
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Initialize
CMINIT(conversation_ID , ’00000001’ (S1) <character output>

sym_dest_name , ’SERVER’ (S4) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

CPI-C VERB ISSUED: Conversation State = Initialize
CMSSL (conversation_ID , ’00000001’ (S1) <character input >

sync_level , CM_CONFIRM (DC23 = 1) <numeric input >
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Initialize
CMSSL (conversation_ID , ’00000001’ (S1) <character input >

sync_level , CM_CONFIRM (DC23 = 1) <numeric input >
return_code) CM_OK (DC15 = 0) <numeric output>

CPI-C VERB ISSUED: Conversation State = Initialize
CMALLC(conversation_ID , ’00000001’ (S1) <character input >

return_code) (DC15) <numeric output>
--

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

12175913 0096141 11000000 CNSL 0800 000000 32
ITP006I NETWORK CPICSMP2 STARTED

--
CPICSMP2 APPCLUC TPCLIENT-3 12175914 0096141 11000000 CTRC 2000 043000 53 EA 00 6

ITP4020I EXECUTION BEGINS FOR CPI-C TP TPCLIENT-00003
--

12175914 0096141 11000000 CNSL 0800 000000 72
ITP137I CPICSMP2 TPCLIENT-00003 - Transaction Program TPCLIENT starting.

--
CPICSMP2 APPCLUC TPCLIENT-3 12175914 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 7

Figure 41. CPI-C multiple-instance TP loglist output

Chapter 26. Loglist examples 383

CPI-C VERB ISSUED: Conversation State = Reset
CMINIT(conversation_ID , (S1) <character output>

sym_dest_name , ’SERVER’ (S4) <character input >
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Initialize
CMINIT(conversation_ID , ’00000001’ (S1) <character output>

sym_dest_name , ’SERVER’ (S4) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

CPI-C VERB ISSUED: Conversation State = Initialize
CMSSL (conversation_ID , ’00000001’ (S1) <character input >

sync_level , CM_CONFIRM (DC23 = 1) <numeric input >
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Initialize
CMSSL (conversation_ID , ’00000001’ (S1) <character input >

sync_level , CM_CONFIRM (DC23 = 1) <numeric input >
return_code) CM_OK (DC15 = 0) <numeric output>

CPI-C VERB ISSUED: Conversation State = Initialize
CMALLC(conversation_ID , ’00000001’ (S1) <character input >

return_code) (DC15) <numeric output>
--
CPICSMP2 APPCLUC TPCLIENT-1 12175918 0096141 11000000 CTRC 2000 141000 413 EA CLIENT 00 6
CPI-C VERB COMPLETED: Conversation State = Send

CMALLC(conversation_ID , ’00000001’ (S1) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

Conversation Characteristics:
conversation_type = CM_MAPPED_CONVERSATION deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
error_direction = CM_RECEIVE_ERROR fill = CM_FILL_LL
mode_name = WSIMLU62 partner_LU_name = KWSAPC2
prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL receive_type = CM_RECEIVE_AND_WAIT
return_control = CM_WHEN_SESSION_ALLOCATED send_type = CM_BUFFER_DATA
sync_level = CM_CONFIRM
TP_name = TPSERVER ’E3D7E2C5D9E5C5D9’X

--
CPICSMP2 APPCLUC TPCLIENT-1 12175912 12175918 12175912 XMIT 8000 941000 18 EA CLIENT 00 6

FMH-5 120502FF 0003D100 4008E3D7 E2C5D9E5 C5D9 *......J. .TPSERVER *
--
CPICSMP2 APPCLUC TPCLIENT-1 12175918 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 7
CPI-C VERB ISSUED: Conversation State = Send

CMSEND(conversation_ID , ’00000001’ (S1) <character input >
send_buffer , *See Data at VERB Completion* (S7) <character input >
send_length , 63 (DC17 = 63) <numeric input >
request_to_send_received , (DC13) <numeric output>
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Send
CMSEND(conversation_ID , ’00000001’ (S1) <character input >

send_buffer , *See XMIT Record Data* (S7) <character input >
send_length , 63 (DC17 = 63) <numeric input >
request_to_send_received , CM_REQ_TO_SEND_NOT_RECEIVED (DC13 = 0) <numeric output>
return_code) CM_OK (DC15 = 0) <numeric output>

--

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

CPICSMP2 APPCLUC TPCLIENT-1 12175918 12175918 12175912 XMIT 8000 841000 63 EA CLIENT 00 8
00000000 D3E440C1 D7D7C3D3 E4C36B40 E3D740E3 D7C3D3C9 C5D5E360 F0F0F0F0 F17A40C4 *LU APPCLUC, TP TPCLIENT-00001: D*
00000020 81A38140 A28595A3 40869996 94408393 898595A3 40A39640 A28599A5 85994B *ata sent from client to server. *

--
CPICSMP2 APPCLUC TPCLIENT-1 12175918 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 9
CPI-C VERB ISSUED: Conversation State = Send

CMDEAL(conversation_ID , ’00000001’ (S1) <character input >
return_code) (DC15) <numeric output>

--
CPICSMP2 APPCLUC TPCLIENT-2 12175919 0096141 11000000 CTRC 2000 141000 413 EA CLIENT 00 12
CPI-C VERB COMPLETED: Conversation State = Send

CMALLC(conversation_ID , ’00000001’ (S1) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

Conversation Characteristics:
conversation_type = CM_MAPPED_CONVERSATION deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
error_direction = CM_RECEIVE_ERROR fill = CM_FILL_LL
mode_name = WSIMLU62 partner_LU_name = KWSAPC2
prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL receive_type = CM_RECEIVE_AND_WAIT
return_control = CM_WHEN_SESSION_ALLOCATED send_type = CM_BUFFER_DATA
sync_level = CM_CONFIRM
TP_name = TPSERVER ’E3D7E2C5D9E5C5D9’X

--
CPICSMP2 APPCLUC TPCLIENT-2 12175913 12175919 12175913 XMIT 8000 941000 18 EA CLIENT 00 12

FMH-5 120502FF 0003D100 4008E3D7 E2C5D9E5 C5D9 *......J. .TPSERVER *
--
CPICSMP2 APPCLUC TPCLIENT-2 12175919 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 13
CPI-C VERB ISSUED: Conversation State = Send

CMSEND(conversation_ID , ’00000001’ (S1) <character input >
send_buffer , *See Data at VERB Completion* (S7) <character input >
send_length , 63 (DC17 = 63) <numeric input >
request_to_send_received , (DC13) <numeric output>
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Send
CMSEND(conversation_ID , ’00000001’ (S1) <character input >

send_buffer , *See XMIT Record Data* (S7) <character input >
send_length , 63 (DC17 = 63) <numeric input >
request_to_send_received , CM_REQ_TO_SEND_NOT_RECEIVED (DC13 = 0) <numeric output>
return_code) CM_OK (DC15 = 0) <numeric output>

--
CPICSMP2 APPCLUC TPCLIENT-2 12175919 12175919 12175913 XMIT 8000 841000 63 EA CLIENT 00 14
00000000 D3E440C1 D7D7C3D3 E4C36B40 E3D740E3 D7C3D3C9 C5D5E360 F0F0F0F0 F27A40C4 *LU APPCLUC, TP TPCLIENT-00002: D*
00000020 81A38140 A28595A3 40869996 94408393 898595A3 40A39640 A28599A5 85994B *ata sent from client to server. *

--
CPICSMP2 APPCLUC TPCLIENT-2 12175919 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 15
CPI-C VERB ISSUED: Conversation State = Send

CMDEAL(conversation_ID , ’00000001’ (S1) <character input >
return_code) (DC15) <numeric output>

--
CPICSMP2 APPCLUS TPSERVER-1 12175919 0096141 11000000 CTRC 2000 043000 53 EA 00 0

ITP4020I EXECUTION BEGINS FOR CPI-C TP TPSERVER-00001
--

12175919 0096141 11000000 CNSL 0800 000000 72
ITP137I CPICSMP2 TPSERVER-00001 - Transaction Program TPSERVER starting.

--

384 Creating Workload Simulator Scripts

CPICSMP2 APPCLUS TPSERVER-1 12175919 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 1
CPI-C VERB ISSUED: Conversation State = Reset

CMACCP(conversation_ID , (S1) <character output>
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Receive
CMACCP(conversation_ID , ’00000001’ (S1) <character output>

return_code) CM_OK (DC15 = 0) <numeric output>
Conversation Characteristics:

conversation_type = CM_MAPPED_CONVERSATION deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
error_direction = CM_RECEIVE_ERROR fill = CM_FILL_LL
mode_name = WSIMLU62 partner_LU_name = KWSAPC1
prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL receive_type = CM_RECEIVE_AND_WAIT
return_control = CM_WHEN_SESSION_ALLOCATED send_type = CM_BUFFER_DATA
sync_level = CM_CONFIRM
TP_name = TPSERVER ’E3D7E2C5D9E5C5D9’X

--

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

CPICSMP2 APPCLUS TPSERVER-1 12175919 12175919 12175919 RECV 8000 141000 18 EA SERVER 00 2
FMH-5 120502FF 0003D100 4008E3D7 E2C5D9E5 C5D9 *......J. .TPSERVER *

--
CPICSMP2 APPCLUS TPSERVER-1 12175919 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 3
CPI-C VERB ISSUED: Conversation State = Receive

CMRCV (conversation_ID , ’00000001’ (S1) <character input >
receive_buffer , (S8) <character output>
requested_length , 100 (DC23 = 100) <numeric input >
data_received , (DC3) <numeric output>
received_length , (DC12) <numeric output>
status_received , (DC19) <numeric output>
request_to_send_received , (DC13) <numeric output>
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Confirm-Deallocate
CMRCV (conversation_ID , ’00000001’ (S1) <character input >

receive_buffer , *See RECV Record Data* (S8) <character output>
requested_length , 100 (DC23 = 100) <numeric input >
data_received , CM_COMPLETE_DATA_RECEIVED (DC3 = 2) <numeric output>
received_length , 63 (DC12 = 63) <numeric output>
status_received , CM_CONFIRM_DEALLOC_RECEIVED (DC19 = 4) <numeric output>
request_to_send_received , CM_REQ_TO_SEND_NOT_RECEIVED (DC13 = 0) <numeric output>
return_code) CM_OK (DC15 = 0) <numeric output>

--
CPICSMP2 APPCLUS TPSERVER-1 12175919 12175919 12175919 RECV 8000 041000 63 EA SERVER 00 4
00000000 D3E440C1 D7D7C3D3 E4C36B40 E3D740E3 D7C3D3C9 C5D5E360 F0F0F0F0 F17A40C4 *LU APPCLUC, TP TPCLIENT-00001: D*
00000020 81A38140 A28595A3 40869996 94408393 898595A3 40A39640 A28599A5 85994B *ata sent from client to server. *

--
CPICSMP2 APPCLUS TPSERVER-1 12175919 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 5
CPI-C VERB ISSUED: Conversation State = Confirm-Deallocate

CMCFMD(conversation_ID , ’00000001’ (S1) <character input >
return_code) (DC15) <numeric output>

--
CPICSMP2 APPCLUC TPCLIENT-1 12175920 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 10
CPI-C VERB COMPLETED: Conversation State = Reset

CMDEAL(conversation_ID , ’00000001’ (S1) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

--
12175920 0096141 11000000 CNSL 0800 000000 72

ITP137I CPICSMP2 TPCLIENT-00001 - Transaction Program TPCLIENT complete.
--
CPICSMP2 APPCLUC TPCLIENT-1 12175920 0096141 11000000 CTRC 2000 043000 60 EA 00 11

ITP4021I EXECUTION HAS COMPLETED FOR CPI-C TP TPCLIENT-00001
--
CPICSMP2 APPCLUC TPCLIENT-3 12175920 0096141 11000000 CTRC 2000 141000 413 EA CLIENT 00 12
CPI-C VERB COMPLETED: Conversation State = Send

CMALLC(conversation_ID , ’00000001’ (S1) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

Conversation Characteristics:
conversation_type = CM_MAPPED_CONVERSATION deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
error_direction = CM_RECEIVE_ERROR fill = CM_FILL_LL
mode_name = WSIMLU62 partner_LU_name = KWSAPC2
prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL receive_type = CM_RECEIVE_AND_WAIT
return_control = CM_WHEN_SESSION_ALLOCATED send_type = CM_BUFFER_DATA
sync_level = CM_CONFIRM
TP_name = TPSERVER ’E3D7E2C5D9E5C5D9’X

--
CPICSMP2 APPCLUC TPCLIENT-3 12175914 12175920 12175914 XMIT 8000 941000 18 EA CLIENT 00 12

FMH-5 120502FF 0003D100 4008E3D7 E2C5D9E5 C5D9 *......J. .TPSERVER *
--
CPICSMP2 APPCLUC TPCLIENT-3 12175920 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 13
CPI-C VERB ISSUED: Conversation State = Send

CMSEND(conversation_ID , ’00000001’ (S1) <character input >
send_buffer , *See Data at VERB Completion* (S7) <character input >
send_length , 63 (DC17 = 63) <numeric input >
request_to_send_received , (DC13) <numeric output>
return_code) (DC15) <numeric output>

--
CPICSMP2 APPCLUS TPSERVER-1 12175920 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 6
CPI-C VERB COMPLETED: Conversation State = Reset

CMCFMD(conversation_ID , ’00000001’ (S1) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

--
12175920 0096141 11000000 CNSL 0800 000000 72

ITP137I CPICSMP2 TPSERVER-00001 - Transaction Program TPSERVER complete.
--

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

CPICSMP2 APPCLUS TPSERVER-1 12175920 0096141 11000000 CTRC 2000 043000 60 EA 00 7
ITP4021I EXECUTION HAS COMPLETED FOR CPI-C TP TPSERVER-00001

--
CPICSMP2 APPCLUS TPSERVER-2 12175920 0096141 11000000 CTRC 2000 043000 53 EA 00 8

ITP4020I EXECUTION BEGINS FOR CPI-C TP TPSERVER-00002
--

12175920 0096141 11000000 CNSL 0800 000000 72
ITP137I CPICSMP2 TPSERVER-00002 - Transaction Program TPSERVER starting.

--
CPICSMP2 APPCLUS TPSERVER-2 12175920 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 9

Chapter 26. Loglist examples 385

CPI-C VERB ISSUED: Conversation State = Reset
CMACCP(conversation_ID , (S1) <character output>

return_code) (DC15) <numeric output>
CPI-C VERB COMPLETED: Conversation State = Receive

CMACCP(conversation_ID , ’00000001’ (S1) <character output>
return_code) CM_OK (DC15 = 0) <numeric output>

Conversation Characteristics:
conversation_type = CM_MAPPED_CONVERSATION deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
error_direction = CM_RECEIVE_ERROR fill = CM_FILL_LL
mode_name = WSIMLU62 partner_LU_name = KWSAPC1
prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL receive_type = CM_RECEIVE_AND_WAIT
return_control = CM_WHEN_SESSION_ALLOCATED send_type = CM_BUFFER_DATA
sync_level = CM_CONFIRM
TP_name = TPSERVER ’E3D7E2C5D9E5C5D9’X

--
CPICSMP2 APPCLUS TPSERVER-2 12175919 12175920 12175920 RECV 8000 141000 18 EA SERVER 00 10

FMH-5 120502FF 0003D100 4008E3D7 E2C5D9E5 C5D9 *......J. .TPSERVER *
--
CPICSMP2 APPCLUS TPSERVER-2 12175920 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 11
CPI-C VERB ISSUED: Conversation State = Receive

CMRCV (conversation_ID , ’00000001’ (S1) <character input >
receive_buffer , (S8) <character output>
requested_length , 100 (DC23 = 100) <numeric input >
data_received , (DC3) <numeric output>
received_length , (DC12) <numeric output>
status_received , (DC19) <numeric output>
request_to_send_received , (DC13) <numeric output>
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Confirm-Deallocate
CMRCV (conversation_ID , ’00000001’ (S1) <character input >

receive_buffer , *See RECV Record Data* (S8) <character output>
requested_length , 100 (DC23 = 100) <numeric input >
data_received , CM_COMPLETE_DATA_RECEIVED (DC3 = 2) <numeric output>
received_length , 63 (DC12 = 63) <numeric output>
status_received , CM_CONFIRM_DEALLOC_RECEIVED (DC19 = 4) <numeric output>
request_to_send_received , CM_REQ_TO_SEND_NOT_RECEIVED (DC13 = 0) <numeric output>
return_code) CM_OK (DC15 = 0) <numeric output>

--
CPICSMP2 APPCLUS TPSERVER-2 12175919 12175920 12175920 RECV 8000 041000 63 EA SERVER 00 12
00000000 D3E440C1 D7D7C3D3 E4C36B40 E3D740E3 D7C3D3C9 C5D5E360 F0F0F0F0 F27A40C4 *LU APPCLUC, TP TPCLIENT-00002: D*
00000020 81A38140 A28595A3 40869996 94408393 898595A3 40A39640 A28599A5 85994B *ata sent from client to server. *

--

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

CPICSMP2 APPCLUC TPCLIENT-3 12175920 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 14
CPI-C VERB COMPLETED: Conversation State = Send

CMSEND(conversation_ID , ’00000001’ (S1) <character input >
send_buffer , *See XMIT Record Data* (S7) <character input >
send_length , 63 (DC17 = 63) <numeric input >
request_to_send_received , CM_REQ_TO_SEND_NOT_RECEIVED (DC13 = 0) <numeric output>
return_code) CM_OK (DC15 = 0) <numeric output>

--
CPICSMP2 APPCLUC TPCLIENT-3 12175920 12175920 12175914 XMIT 8000 841000 63 EA CLIENT 00 14
00000000 D3E440C1 D7D7C3D3 E4C36B40 E3D740E3 D7C3D3C9 C5D5E360 F0F0F0F0 F37A40C4 *LU APPCLUC, TP TPCLIENT-00003: D*
00000020 81A38140 A28595A3 40869996 94408393 898595A3 40A39640 A28599A5 85994B *ata sent from client to server. *

--
CPICSMP2 APPCLUC TPCLIENT-3 12175920 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 15
CPI-C VERB ISSUED: Conversation State = Send

CMDEAL(conversation_ID , ’00000001’ (S1) <character input >
return_code) (DC15) <numeric output>

--
CPICSMP2 APPCLUS TPSERVER-2 12175920 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 13
CPI-C VERB ISSUED: Conversation State = Confirm-Deallocate

CMCFMD(conversation_ID , ’00000001’ (S1) <character input >
return_code) (DC15) <numeric output>

--
CPICSMP2 APPCLUC TPCLIENT-2 12175921 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 16
CPI-C VERB COMPLETED: Conversation State = Reset

CMDEAL(conversation_ID , ’00000001’ (S1) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

--
12175921 0096141 11000000 CNSL 0800 000000 72

ITP137I CPICSMP2 TPCLIENT-00002 - Transaction Program TPCLIENT complete.
--
CPICSMP2 APPCLUC TPCLIENT-2 12175921 0096141 11000000 CTRC 2000 043000 60 EA 00 17

ITP4021I EXECUTION HAS COMPLETED FOR CPI-C TP TPCLIENT-00002
--
CPICSMP2 APPCLUS TPSERVER-2 12175921 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 14
CPI-C VERB COMPLETED: Conversation State = Reset

CMCFMD(conversation_ID , ’00000001’ (S1) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

--
12175921 0096141 11000000 CNSL 0800 000000 72

ITP137I CPICSMP2 TPSERVER-00002 - Transaction Program TPSERVER complete.
--
CPICSMP2 APPCLUS TPSERVER-2 12175921 0096141 11000000 CTRC 2000 043000 60 EA 00 15

ITP4021I EXECUTION HAS COMPLETED FOR CPI-C TP TPSERVER-00002
--
CPICSMP2 APPCLUS TPSERVER-3 12175921 0096141 11000000 CTRC 2000 043000 53 EA 00 8

ITP4020I EXECUTION BEGINS FOR CPI-C TP TPSERVER-00003
--

12175921 0096141 11000000 CNSL 0800 000000 72
ITP137I CPICSMP2 TPSERVER-00003 - Transaction Program TPSERVER starting.

--
CPICSMP2 APPCLUS TPSERVER-3 12175921 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 9
CPI-C VERB ISSUED: Conversation State = Reset

CMACCP(conversation_ID , (S1) <character output>
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Receive
CMACCP(conversation_ID , ’00000001’ (S1) <character output>

return_code) CM_OK (DC15 = 0) <numeric output>
Conversation Characteristics:

conversation_type = CM_MAPPED_CONVERSATION deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
error_direction = CM_RECEIVE_ERROR fill = CM_FILL_LL
mode_name = WSIMLU62 partner_LU_name = KWSAPC1
prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL receive_type = CM_RECEIVE_AND_WAIT

386 Creating Workload Simulator Scripts

return_control = CM_WHEN_SESSION_ALLOCATED send_type = CM_BUFFER_DATA
sync_level = CM_CONFIRM
TP_name = TPSERVER ’E3D7E2C5D9E5C5D9’X

--

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

CPICSMP2 APPCLUS TPSERVER-3 12175921 12175921 12175921 RECV 8000 141000 18 EA SERVER 00 10
FMH-5 120502FF 0003D100 4008E3D7 E2C5D9E5 C5D9 *......J. .TPSERVER *

--
CPICSMP2 APPCLUS TPSERVER-3 12175921 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 11
CPI-C VERB ISSUED: Conversation State = Receive

CMRCV (conversation_ID , ’00000001’ (S1) <character input >
receive_buffer , (S8) <character output>
requested_length , 100 (DC23 = 100) <numeric input >
data_received , (DC3) <numeric output>
received_length , (DC12) <numeric output>
status_received , (DC19) <numeric output>
request_to_send_received , (DC13) <numeric output>
return_code) (DC15) <numeric output>

CPI-C VERB COMPLETED: Conversation State = Confirm-Deallocate
CMRCV (conversation_ID , ’00000001’ (S1) <character input >

receive_buffer , *See RECV Record Data* (S8) <character output>
requested_length , 100 (DC23 = 100) <numeric input >
data_received , CM_COMPLETE_DATA_RECEIVED (DC3 = 2) <numeric output>
received_length , 63 (DC12 = 63) <numeric output>
status_received , CM_CONFIRM_DEALLOC_RECEIVED (DC19 = 4) <numeric output>
request_to_send_received , CM_REQ_TO_SEND_NOT_RECEIVED (DC13 = 0) <numeric output>
return_code) CM_OK (DC15 = 0) <numeric output>

--
CPICSMP2 APPCLUS TPSERVER-3 12175921 12175921 12175921 RECV 8000 041000 63 EA SERVER 00 12
00000000 D3E440C1 D7D7C3D3 E4C36B40 E3D740E3 D7C3D3C9 C5D5E360 F0F0F0F0 F37A40C4 *LU APPCLUC, TP TPCLIENT-00003: D*
00000020 81A38140 A28595A3 40869996 94408393 898595A3 40A39640 A28599A5 85994B *ata sent from client to server. *

--
CPICSMP2 APPCLUS TPSERVER-3 12175921 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 13
CPI-C VERB ISSUED: Conversation State = Confirm-Deallocate

CMCFMD(conversation_ID , ’00000001’ (S1) <character input >
return_code) (DC15) <numeric output>

--
CPICSMP2 APPCLUC TPCLIENT-3 12175921 0096141 11000000 CTRC 2000 141000 253 EA CLIENT 00 16
CPI-C VERB COMPLETED: Conversation State = Reset

CMDEAL(conversation_ID , ’00000001’ (S1) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

--
12175921 0096141 11000000 CNSL 0800 000000 72

ITP137I CPICSMP2 TPCLIENT-00003 - Transaction Program TPCLIENT complete.
--
CPICSMP2 APPCLUC TPCLIENT-3 12175921 0096141 11000000 CTRC 2000 043000 60 EA 00 17

ITP4021I EXECUTION HAS COMPLETED FOR CPI-C TP TPCLIENT-00003
--
CPICSMP2 APPCLUS TPSERVER-3 12175921 0096141 11000000 CTRC 2000 141000 253 EA SERVER 00 14
CPI-C VERB COMPLETED: Conversation State = Reset

CMCFMD(conversation_ID , ’00000001’ (S1) <character input >
return_code) CM_OK (DC15 = 0) <numeric output>

--
12175921 0096141 11000000 CNSL 0800 000000 72

ITP137I CPICSMP2 TPSERVER-00003 - Transaction Program TPSERVER complete.
--

12175921 0096141 11000000 CNSL 0800 000000 54
ITP137I CPICSMP2 TPSERVER-00003 - Simulation complete.

--
CPICSMP2 APPCLUS TPSERVER-3 12175921 0096141 11000000 CTRC 2000 043000 60 EA 00 15

ITP4021I EXECUTION HAS COMPLETED FOR CPI-C TP TPSERVER-00003
--

12180837 0096141 11000000 CNSL 0800 000000 4

Chapter 26. Loglist examples 387

388 Creating Workload Simulator Scripts

Chapter 27. Network models

This topic contains copies of the model networks and scripts that are accessible
online when you use the WSim/ISPF Interface. You can use these models as
prototypes when you code WSim networks and scripts. Both STL procedures and
message generation decks are provided. You might need to change some values in
these models to operate in your environment. These values are indicated by the
“==>” string in the model. A comment following the string indicates the type of
change required.

VTAM application simulation
This WSim script simulates two VTAM applications, each having one LU. The
name used for this model by the WSim/ISPF Interface is VTAMAPPL.

Network definition
/* VTAM application simulation */
@NETWORK
**
* Network Configuration: VTAM application (VTAMAPPL) *
* *
* Description: This WSim script will simulate two VTAM applications (APPL1 *
* and APPL2), each having one LU. *
* *
* Some values may need to be changed in this data set in *
* order to operate in your environment. They are indicated *
* by the "==> " string. *
* *
* Restrictions/Dependencies: *
* 1) Start the WSim echo application ITPECHO with the VTAM application name *
* ITPECHO. *
* 2) The VTAMAPPL names used in this network (APPL1 and APPL2) must be *
* defined to VTAM and must be active. *
* *
**

--
* Network statement operands. *
--
VAPPL NTWRK ITIME=1, * Network interval report every 1 minute *

SCAN=(1,1,0), * Scan/display/recovery times *
UTI=100, * User time interval = 1 second *

--
* VTAMAPPL operands coded on the network statement. These values will *
* be the default for every VTAMAPPL in the network. *
--

BUFSIZE=3000, * Buffer size is 3000 bytes *
MLOG=YES, * Message logging function will be used *

--
* LU operands coded on the network statement. These values will be *
* the default for every Logical Unit in the network. *
--

DELAY=F1, * Use fixed message delay interval *
DLOGMOD=D4A32782, * VTAM logon mode *

© Copyright IBM Corp. 1989, 2015 389

INIT=SEC, * Secondary LU initiates the session *
LOGDSPLY=BOTH, * Log the display buffers before and after*

* * message generation *
LUTYPE=LU2, * Logical unit type = LU2 *
STLTRACE=YES, * Write message generation trace *

* * records to the log *
PATH=(0), * Specifies which PATH statement the LU *

* * will use *
THKTIME=UNLOCK * Terminal unlock starts msg delay timer *

--
0 PATH LUDECK * Run the LUDECK msgtxt on this path *
--

%EJECT
--
* Define the network resources. *
* *
* ==> CHANGE the VTAMAPPL names APPL1 and APPL2 as needed to match names *
* in your environment. These names must be defined to VTAM. *
--
APPL1 VTAMAPPL
LU11 LU
*LU12 LU
*
APPL2 VTAMAPPL
LU21 LU
*LU22 LU
@ENDNETWORK

Message generation deck
LUDECK MSGTXT
**
* The Message Generation deck. *
**

**
* Issue an INITSELF to log on to ITPECHO. *
* Wait until the logon is complete. *
* After the logon completes, issue a message to the console. *
**

CMND COMMAND=INIT,RESOURCE=ITPECHO
0 IF LOC=RU+0,TEXT=(WELCOME),SCAN=YES,THEN=CONT,ELSE=WAIT

WAIT
WTO ($LUID$ UP AND RUNNING)

**
* Send a message to ITPECHO. *
* Repeat the loop forever until the WSim operator stops the network. *
**
LOOP LABEL

TEXT (MSG $DSEQ,5$ FROM $LUID$)
BRANCH LABEL=LOOP
ENDTXT

STL procedure
@PROGRAM=VTAMAPPL
/***
* The variable dictionary. *
***/

/***/
bit unshared stay /* Indicates that we haven’t gotten the */

390 Creating Workload Simulator Scripts

/* logon screen yet */
integer unshared counter /* Counts how many messages have been */

/* sent between the LUs */
/***/

LUDECK: msgtxt
/***
* The STL deck. *
***/

/***
* Issue an INITSELF to log on to ITPECHO. *
* Wait until the logon is complete. *
* After the logon completes, issue a message to the console. *
***/
check: onin index(screen,’WELCOME’) > 0 then stay = off
stay = on
initself(’ITPECHO’,’D4A32782’)
do while stay = on

wait until onin
end
deact check
say luid() ’up and running’

/***
* Send a message to ITPECHO. *
* Repeat the loop forever until the WSim operator stops the network. *
***/
counter = 0
do forever

counter = counter + 1
type char(counter) ’ FROM ’ luid()
transmit
end

endtxt

Telnet 3270 simulation
This WSim script simulates a TCP/IP connection with 4 simulated Telnet 3270
clients. The name used for this model by the WSim/ISPF Interface is TN3270.

Network definition
* Telnet 3270 simulation *
**
* Network Configuration: Telnet 3270 simulation *
* *
* Description: This WSim script will simulate four 3270 devices *
* connecting to an application logon screen and logging *
* back off. The SERVADDR operand specifies the IP dotted*
* address of the host to which the devices will connect. *
* *
* Some values may need to be changed in this data set in *
* order to operate in your environment. They are *
* indicated by the "<== " string. *
* *
**

--
* Network statement operands. *
--
TN3270 NTWRK HEAD=’TEST NETWORK’, * Set the title line

Chapter 27. Network models 391

CONRATE=YES, * Print message rates on console
ITIME=1, * Interval report every 1 minute
MSGTRACE=YES, * Log message generation trace
LOGDSPLY=BOTH, * Log formatted 3270 displays
BUFSIZE=2048, * Specify buffer size
THKTIME=UNLOCK, * Wait for keyboard unlock
UTI=100, * User time interval is 1 second
SEQ=0, * Clear network sequence counter
TCPNAME=TCPIP, * <== Default name of the local

* * TCPIP virtual machine
SERVADDR=9.67.6.1 * <== Default IP server address

* * to which you will connect

--
* Define the message decks included in this path *
--
SOMEHOST PATH SOMEHOST * Execute SOMEHOST msgtxt
--
* Define the network resources. *
* *
* This is a TCP/IP connection with 4 simulated devices. You may *
* add additional operands on the devices if desired. See the WSim *
* Script Guide and Reference for details on valid operands. *
--
TCONN1 TCPIP
DEV11 DEV
DEV12 DEV
DEV13 DEV
DEV14 DEV

Message generation deck
--
SOMEHOST MSGTXT
--
* The Message Generation deck. *
* *
* This deck calls WAITSCRN to wait for the application logon screen *
* and issues a Write To Operator message acknowledging that the device *
* has successfully connected. A USERID and password are selected *
* from user tables defined below that attempted to logon to the host. *
* The device then calls WAITREDY to wait for a "ready prompt" from *
* the host indicating a successful logon. After receiving the *
* appropriate ready message, the device logs off. After a device *
* logs off, WSim is closed down. *
* *
--

CALL NAME=WAITSCRN
WTO ($DEVID$ ESTABLISHED TCPIP SESSION, LOGGING ON)
SET NC1=NSEQ
SET NSEQ=+1
TEXT ($UTBL,IDS,NC1$),MORE=YES
TAB
TEXT ($UTBL,PWS,NC1$)
ENTER
CALL NAME=WAITREDY
WTO (GOT READY PROMPT)
TEXT (LOGOFF)
ENTER
CALL NAME=WAITLOGF
WTO (GOT LOGOFF MESSAGE)
OPCMND (ZEND)
ENDTXT

--
WAITSCRN MSGTXT
--
* * <== The TEXT operand below must *

392 Creating Workload Simulator Scripts

* * be changed to reflect the *
* * appropriate logon screen. *
--
0 IF WHEN=IN,LOC=B+0,TEXT=(VM/ESA ONLINE),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAITREDY MSGTXT
--
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate ready message *
--
0 IF LOC=B+0,TEXT=(Ready),SCAN=YES,THEN=CONT
1 IF LOC=B+0,TEXT=(Reconnected),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAITLOGF MSGTXT
*---
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate logoff message *
*---
0 IF LOC=B+0,TEXT=(Logoff),SCAN=YES,THEN=CONT
1 IF LOC=B+0,TEXT=(LOGOFF),SCAN=YES,THEN=CONT

WAIT
CLEAR
ENDTXT

*---
* * <== The USERIDs and passwords
* * below must be changed to
* * valid names
*---
IDS MSGUTBL (USER1),(USER2),(USER3),(USER4)
PWS MSGUTBL (PASSWORD),(PASSWORD),(PASSWORD),(PASSWORD)

STL procedure
/*---*
* The Message Generation deck. *
* *
* This deck waits for the application logon screen and displays a *
* message to the operator acknowledging that the device has been *
* successfully connected. A USERID and password are selected from *
* user tables defined below that attempt to logon to the host. The *
* device then calls WAITREDY to wait for a "ready prompt" from the *
* host indicating a successful logon. After receiving the appropriate *
* ready message, the device logs off. Once a device logs off, WSim *
* is closed down. *
* *
---/
allocate nextnum ’NSEQ’
integer shared nextid

somehost: msgtxt
wait until onin index(screen, ’VM/ESA ONLINE’) > 0
say devid() ’ESTABLISHED TCPIP SESSION, LOGGING ON’
nextid = nextnum
nextnum = nextnum + 1
type utbl(ids,nextid)
tab
type utbl(pws,nextid)
transmit using enter
wait until onin index(screen, ’READY;’) > 0

Chapter 27. Network models 393

say ’GOT READY PROMPT’
type ’LOGOFF’
transmit using enter
wait until onin index(screen, ’LOGOFF’) > 0
type ’ZEND’
endtxt

ids: msgutbl
’USER1’
’USER2’
’USER3’
’USER4’
endutbl

pws: msgutbl
’PASSWORD’
’PASSWORD’
’PASSWORD’
’PASSWORD’
endutbl

File Transfer Protocol (FTP) simulation
This WSim script simulates a TCP/IP connection with one simulated TCP/IP FTP
client. The name used for this model by the WSim/ISPF Interface is FTP.

Network definition
* File Transfer Protocol *
**
* Network Configuration: File Transfer Protocol simulation *
* *
* Description: This WSim script will simulate one FTP client user *
* connecting to a server, putting a file to that server, *
* then retrieving the same file. The SERVADDR operand *
* specifies the IP dotted address of the host to which *
* the device will connect. *
* *
* Some values may need to be changed in this data set in *
* order to operate in your environment. They are *
* indicated by the "<== " string. *
* *
**

--
* Network statement operands. *
--
FTP NTWRK HEAD=’Model FTP Network’, * Set the title line

CONRATE=YES, * Print message rates on console
OPTIONS=(DEBUG,MONCMND), * Network Options
ITIME=1, * Interval report every 1 minute
BUFSIZE=32000, * Specify buffer size
THKTIME=UNLOCK, * Wait for keyboard unlock
UTI=100, * User time interval is 1 second
TCPNAME=TCPIP, * <== Default name of the local

* * TCPIP virtual machine
SERVADDR=9.67.43.62 * <== Remote Server

* * to which you will connect
--
1 UTBL (Hes the invisible man), * First Record Data

(Catch him if you can) * Second Record Data
--
FTPDECK PATH FTPDECK

394 Creating Workload Simulator Scripts

--
* Define the file data to be simulated *
--
FILE1 FILE TYPE=E, * File Data is EBCDIC

RECFM=F, * Fixed Record Format
RECLEN=80, * Record Length is 80
DATA=1 * Get data from UTBL 1

--
* Define the network resources. *
* *
* This is a TCP/IP connection with 1 simulated device. You may *
* add additional operands on the device if desired. See the WSim *
* Script guide and Reference for details on valid operands. *
--
TCONN1 TCPIP PATH=(FTPDECK)
DEV010 DEV TYPE=FTP

Message generation deck
FTPDECK MSGTXT
--
* The Message Generation deck. *
* *
* Generates FTP commands for file transfer. *
* user - identifies the user to the server. *
* pass - supplies a password to the server. *
* ebcdic - set file transfer type to EBCDIC. *
* mode - specifies file transfer mode. *
* sendsite - disables automatic transmission of SITE subcommand. *
* put - transfers the FILE data defined by WSim FILE statement. *
* get - transfers the data from a file on the server. *
* *
--
* Wait for connect
1 IF WHEN=IN,LOC=D+0,COND=GE,

TEXT=(’00’x),THEN=CONT /* Wait for next message */
WAIT

LOOP TEXT (user testuser) /* <== Enter User ID */
TEXT (pass testpass) /* <== Enter Password */
TEXT (ebcdic) /* EBCDIC Translation */
TEXT (mode B) /* Block Mode */
TEXT (sendsite) /* Automatic SITE Off */
TEXT (put FILE1 TEST.FILE1) /* Put File1 */
TEXT (get TEST.FILE1) /* Get File1 back */

4 IF WHEN=IN,
LOCTEXT=($RECALL,B+0,3$),COND=EQ,TEXT=(250),THEN=E-SUCC

BRANCH LABEL=NOTSU
SUCC WTO (Get successful.)

RETURN
NOTSU LABEL
5 IF WHEN=IN,

LOCTEXT=($RECALL,B+0,3$),COND=EQ,TEXT=(426),THEN=E-FAIL
BRANCH LABEL=QUIT

FAIL WTO (Get failed.)
RETURN

QUIT TEXT (quit),MORE=YES
* Following quiesce will keep automatic reconnect from
* occurring. Release the DEV to recycle through the
* script. Remove the QUIESCE to
* automatically recycle after 30 seconds.

QUIESCE
BRANCH LABEL=LOOP
ENDTXT

Chapter 27. Network models 395

STL procedure
ftpdeck: msgtxt
/*---*
* The Message Generation deck. *
* *
* Generates FTP commands for file transfer. *
* user - identifies the user to the server. *
* pass - supplies a password to the server. *
* ebcdic - set file transfer type to EBCDIC. *
* mode - specifies file transfer mode. *
* sendsite - disables automatic transmission of SITE subcommand. *
* put - transfers the FILE data defined by WSim FILE statement. *
* get - transfers the data from a file on the server. *
* *
---/
/* Wait for connect */

wait until onin
Do forever
type ’user testuser’ /* <== Enter User ID */
transmit
type ’pass testpass’ /* <== Enter Password */
transmit
type ’ebcdic’ /* EBCDIC Transfer Type */
transmit
type ’mode B’ /* Block Mode */
transmit
type ’sendsite’ /* Automatic SITE Off */
transmit
type ’put FILE1 TEST.FILE1’ /* Put File1 */
transmit
s: onin substr(buffer,1,3)=’250’ then /* Check message number */

say ’Get successful.’
f: onin substr(buffer,1,3)=’426’ then /* Check message number */

say ’Get failed.’
type ’get TEST.FILE1’ /* Get File1 back */
transmit
deact s,f
type ’quit’ /* Drop Connection */

/* Following quiesce will keep automatic reconnect from */
/* occurring. Release the DEV to recycle through the */
/* script. Replace the quiesce with a transmit to */
/* automatically recycle after 30 seconds. */

quiesce
end
endtxt

Simple TCP client simulation
This WSim script simulates a TCP/IP connection with one simulated TCP/IP
Simple TCP Client. The name used for this model by the WSim/ISPF Interface is
STCP.

Network definition
* Simple TCP Client
**
* Network Configuration: Simple TCP Client simulation *
* *
* Description: This WSim script will simulate one Simple TCP Client *
* connecting to a server, issuing a request to that *
* server, receiving data until the server closes the *
* connection, and then repeating the process. *
* *
* The server to which this Simple TCP Client connects *
* is assumed to have the following characteristics: *

396 Creating Workload Simulator Scripts

* 1) requests to it must use ASCII code; *
* 2) the end of a request is marked by a sequence of *
* two carriage return/line feed (CR/LF) sequences; *
* 3) the server closes the connection when all response *
* data has been sent. *
* *
* Some values may need to be changed in this data set in *
* order to operate in your environment. They are *
* indicated by the "<== " string. *
* *
**

--
* Network statement operands. *
--
STCP NTWRK HEAD=’Model STCP Network’, * Set the title line

CONRATE=YES, * Print message rates on console
OPTIONS=(MONCMND), * Network Options
ITIME=1, * Interval report every 1 minute
BUFSIZE=32000, * Specify buffer size
THKTIME=UNLOCK, * Wait for keyboard unlock
UTI=100, * User time interval is 1 second
TCPNAME=TCPIP * <== Default name of the local

* * TCPIP virtual machine
--
STCPDECK PATH STCPDECK
--
* Define the network resources. *
* *
* This is a TCP/IP connection with 1 simulated device. You may *
* add additional operands on the device if desired. See the WSim *
* Script guide and Reference for details on valid operands. *
--
TCONN1 TCPIP
DEV010 DEV TYPE=STCP, * Simple TCP Client

PORT=5555, * Server Port for connection
SERVADDR=9.67.43.62, * Server IP Address for connection
PATH=(STCPDECK) * Path Sequence for this DEV

Message generation deck
STCPDECK MSGTXT

* The Message Generation deck. *
* *
* Generates requests for the server hypothesized in the network *
* description above, waits for the connection to be *
* closed, and then generates another request *

* Initialize table for translation to ASCII

DATASAVE AREA=1,
TEXT=(’000102031A091A7F1A1A1A0B0C0D0E0F’)+ * 00-0F

(’101112131A1A081A18191A1A1C1D1E1F’)+ * 10-1F
(’1A1A1C1A1A0A171B1A1A1A1A1A050607’)+ * 20-2F
(’1A1A161A1A1E1A041A1A1A1A14151A1A’)+ * 30-3F
(’20A6E180EB909FE2AB8B9B2E3C282B7C’)+ * 40-4F
(’26A9AA9CDBA599E3A89E21242A293B5E’)+ * 50-5F
(’2D2FDFDC9ADDDE989DACBA2C255F3E3F’)+ * 60-6F
(’D78894B0B1B2FCD6FB603A2340273D22’)+ * 70-7F
(’F861626364656667686996A4F3AFAEC5’)+ * 80-8F
(’8C6A6B6C6D6E6F7071729787CE93F1FE’)+ * 90-9F
(’C87E737475767778797AEFC0DA5BF2F9’)+ * A0-AF
(’B5B6FDB7B8B9E6BBBCBD8DD9BF5DD8C4’)+ * B0-BF
(’7B414243444546474849CBCABEE8ECED’)+ * C0-CF
(’7D4A4B4C4D4E4F505152A1ADF5F4A38F’)+ * D0-DF
(’5CE7535455565758595AA0858EE9E4D1’)+ * E0-EF

Chapter 27. Network models 397

(’30313233343536373839B3F7F0FAA7FF’) * F0-FF
* Set length of input data each time data is received
1 IF WHEN=IN,STATUS=HOLD,SNASCOPE=ALL,

LOC=NC1,COND=GE,TEXT=0,
THEN=E-SAVELENG

BRANCH LABEL=TRANLOOP
SAVELENG DATASAVE AREA=2,

TEXT=($RECALL,B+0$)
SET DC2=LENG(2)
RETURN

* Loop sending transaction
TRANLOOP DATASAVE AREA=2,

FUNCTION=TRANSLATE,
TEXT=(Sample Transaction from $ID,8$),
TABLEO=($RECALL,1$)

DATASAVE AREA=3,
FUNCTION=TRANSLATE,
TEXT=(Sample Transaction line 2),
TABLEO=($RECALL,1$)

TEXT ($RECALL,2$’0D0A’$RECALL,3$’0D0A0D0A’)
2 IF WHEN=IN,STATUS=HOLD,SNASCOPE=ALL,

LOC=DC2,TEXT=0,COND=EQ,
THEN=CONT

WAIT
DEACT IFS=(2)
BRANCH LABEL=TRANLOOP
ENDTXT

STL procedure
stcpdeck: msgtxt
/*---*
* The Message Generation deck. *
* *
* Generates requests for the server hypothesized in the network *
* description above, waits for the connection to be *
* closed, and then generates another request *
* *
---/
/* Initialize table for translation to ASCII */

ebc2asc = ’000102031A091A7F1A1A1A0B0C0D0E0F’X||, /* 00-0F */
’101112131A1A081A18191A1A1C1D1E1F’X||, /* 10-1F */
’1A1A1C1A1A0A171B1A1A1A1A1A050607’X||, /* 20-2F */
’1A1A161A1A1E1A041A1A1A1A14151A1A’X||, /* 30-3F */
’20A6E180EB909FE2AB8B9B2E3C282B7C’X||, /* 40-4F */
’26A9AA9CDBA599E3A89E21242A293B5E’X||, /* 50-5F */
’2D2FDFDC9ADDDE989DACBA2C255F3E3F’X||, /* 60-6F */
’D78894B0B1B2FCD6FB603A2340273D22’X||, /* 70-7F */
’F861626364656667686996A4F3AFAEC5’X||, /* 80-8F */
’8C6A6B6C6D6E6F7071729787CE93F1FE’X||, /* 90-9F */
’C87E737475767778797AEFC0DA5BF2F9’X||, /* A0-AF */
’B5B6FDB7B8B9E6BBBCBD8DD9BF5DD8C4’X||, /* B0-BF */
’7B414243444546474849CBCABEE8ECED’X||, /* C0-CF */
’7D4A4B4C4D4E4F505152A1ADF5F4A38F’X||, /* D0-DF */
’5CE7535455565758595AA0858EE9E4D1’X||, /* E0-EF */
’30313233343536373839B3F7F0FAA7FF’X; /* F0-FF */

/* Set length of input data each time data is received */
onin then ilen=length(buffer)

/* Loop sending transaction */
Do forever
type translate(’Sample Transaction from’ id(),ebc2asc)||’0d0a’x||,

translate(’Sample Transaction line 2’,ebc2asc)||’0d0a0d0a’x;
transmit and wait until onin ilen=0 /* Send in the transaction */

/* and wait for connection */
/* to close */

end
endtxt

398 Creating Workload Simulator Scripts

Simple TCP sample script
The following Simple TCP script provides Telnet Line Mode NVT negotiations
exchange. Simple TCP provides an alternative means of simulating the various
Telnet protocols. Simple TCP gives the user more control in the negotiations but
requires more WSim scripting.

Simple TCP Client connecting to a server using Telnet Line
Mode Network Virtual Terminal

@NET
**
* Network Configuration: Simple TCP Client simulation *
* *
* Description: This WSim script will simulate one Simple TCP Client *
* connecting to a server, issuing a request to that *
* server, receiving data until the server closes the *
* connection, and then repeating the process. *
* *
* The server to which this Simple TCP Client connects *
* is assumed to have the following characteristics: *
* 1) requests to it must use ASCII code; *
* 2) the end of a request is marked by the *
* carriage return/line feed (CR/LF) sequence; *
* 3) the server closes the connection when all response *
* data has been sent. *
* *
* Some values may need to be changed in this data set in *
* order to operate in your environment. They are *
* indicated by the "<== " string. *
* *
**

--
* Network statement operands. *
--
STCPLNMD NTWRK HEAD=’Telnet Line Mode NVT’, * Set the title line

CONRATE=YES, * Print message rates on console
OPTIONS=(MONCMND,debug), * Network Options
ITIME=1, * Interval report every 1 minute
BUFSIZE=32000, * Specify buffer size
THKTIME=UNLOCK, * Wait for keyboard unlock
UTI=100, * User time interval is 1 second
MSGTRACE=YES, * Trace messages
STLTRACE=YES, * Trace messages
TCPNAME=TCPIP * <== Default name of the local

* * TCPIP virtual machine
--
STCPDECK PATH STCPDECK
--
* Define the network resources. *
* *
* This is a TCP/IP connection with 1 simulated device. You may *
* add additional operands on the device if desired. See the WSim *
* Script Guide and Reference for details on valid operands. *
--
TCONN1 TCPIP
DEV010 DEV TYPE=STCP, * Simple TCP Client

PORT=23, * Server Port for connection
SERVADDR=9.67.127.216,* Server IP Address for connect
PATH=(STCPDECK) * Path Sequence for this DEV

&ENDNET

&program=stcpprog
integer shared nextnum

Chapter 27. Network models 399

integer nextid
integer startpos
constant crlf ’0D0A’x
constant ff ’FF’x

stcpdeck: msgtxt
/*---*
* The Message Generation deck. *
* *
* Generates requests for the server hypothesized in the network *
* description above, waits for the connection to be *
* closed, and then generates another request. *
---/
/* Initialize table for translation to EBCDIC */

asc2ebc = ’00010203372D2E2F1605250B0C0D0E0F’X{, /* 00-0F */
’101112133C3D322618193F27221D351F’X{, /* 10-1F */
’405A7F7B5B6C507D4D5D5C4E6B604B61’X{, /* 20-2F */
’F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F’X{, /* 30-3F */
’7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6’X{, /* 40-4F */
’D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D’X{, /* 50-5F */
’79818283848586878889919293949596’X{, /* 60-6F */
’979899A2A3A4A5A6A7A8A9C04FD0A107’X{, /* 70-7F */
’00010203372D2E2F1605250B0C0D0E0F’X{, /* 80-8F */
’101112133C3D322618193F27221D351F’X{, /* 90-9F */
’405A7F7B5B6C507D4D5D5C4E6B604B61’X{, /* A0-AF */
’F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F’X{, /* B0-BF */
’7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6’X{, /* C0-CF */
’D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D’X{, /* D0-DF */
’79818283848586878889919293949596’X{, /* E0-EF */
’979899A2A3A4A5A6A7A8A9C04FD0A107’; /* F0-FF */

/* Initialize table for translation to ASCII */
ebc2asc = ’000102031A091A7F1A1A1A0B0C0D0E0F’X{, /* 00-0F */

’101112131A1A081A18191A1A1C1D1E1F’X{, /* 10-1F */
’1A1A1C1A1A0A171B1A1A1A1A1A050607’X{, /* 20-2F */
’1A1A161A1A1E1A041A1A1A1A14151A1A’X{, /* 30-3F */
’20A6E180EB909FE2AB8B9B2E3C282B7C’X{, /* 40-4F */
’26A9AA9CDBA599E3A89E21242A293B5E’X{, /* 50-5F */
’2D2FDFDC9ADDDE989DACBA2C255F3E3F’X{, /* 60-6F */
’D78894B0B1B2FCD6FB603A2340273D22’X{, /* 70-7F */
’F861626364656667686996A4F3AFAEC5’X{, /* 80-8F */
’8C6A6B6C6D6E6F7071729787CE93F1FE’X{, /* 90-9F */
’C87E737475767778797AEFC0DA5BF2F9’X{, /* A0-AF */
’B5B6FDB7B8B9E6BBBCBD8DD9BF5DD8C4’X{, /* B0-BF */
’7B414243444546474849CBCABEE8ECED’X{, /* C0-CF */
’7D4A4B4C4D4E4F505152A1ADF5F4A38F’X{, /* D0-DF */
’5CE7535455565758595AA0858EE9E4D1’X{, /* E0-EF */
’30313233343536373839B3F7F0FAA7FF’X; /* F0-FF */

/* clear data received each time data is transmitted */
onout then
data_in=’’
/* if no data is received, the connection is closed */

onin buffer=’’ then abort
/* store data received until data transmitted */

onin then
data_in=data_in{buffer

type ’0D0A’x

/* this script does not account for ’FF’x at the end of data */
/* look at each received stream of data and transmit a response */
/* WILL and DO will be responded back with WONT and DONT */
/* the client will look like a Network Virtual Terminal */
/* the script assumes that there will be a prompt to check */
/* for to indicate the when the client can send data */

/* set look_for to what you expect to receive */

400 Creating Workload Simulator Scripts

look_for=’login’
call wait4it

say devid() ’ received login’
nextid =nextnum /* index for user tables */
nextnum=nextnum+1
if nextnum=utblmax(ids) then
nextnum=0
type translate(utbl(ids,nextid),ebc2asc){crlf

/* change ’Password’ to what you expect to receive */
look_for=’Password’
call wait4it

say devid() ’ received Password’
type translate((utbl(pws,nextid)),ebc2asc){crlf

do nextcmd=0 to utblmax(cmds)

/* change ’$’ to what prompt you expect to receive */
look_for=’$’

call wait4it
say devid() ’ sending COMMAND’ utbl(cmds,nextcmd)
type translate((utbl(cmds,nextcmd)),ebc2asc){crlf

end
suspend()
quiesce
endtxt

wait4it: msgtxt

/* wait for specific data deck - */
/* set look_for to the data expected */
/* check for FF in the data stream in case more negotiations */
/* need to take place */

look_for = translate(look_for,ebc2asc)
notfound = on
do while notfound=on /* wait until data found */
delay(0)
transmit and wait until onin
if index(data_in,ff) > 0 then /* look for commands first */
call negotiat /* negotiate commands */
else
if index(data_in,look_for) > 0 then /* look for data next */
notfound = off

end
endtxt

negotiat: msgtxt

/* negotiation deck - */
/* parse through data for FF, look at next bytes for the */
/* commands and options */
/* looks for DO, DONT, WILL, WONT and DATA MARK commands */
/* looks for the Suppress Go Ahead option */

data_out=’’ /* clear output buffer */
data_ck=’’ /* clear data parsing field */
datalen=length(data_in) /* get data length */
if datalen>1 then /* >1 implies not just FF */
do
startpos=index(data_in,ff) /* find FF in data */

/* start at command past ff */

Chapter 27. Network models 401

data_ck=substr(data_in,startpos+1,length(data_in)-startpos)
fffound=on
do while fffound=on

/* get first byte of parsed data */
data_byte=substr(data_ck,1,1)

/* get second byte of parsed data */
data_byte2=substr(data_ck,2,1)
if data_byte=’FD’x │ data_byte=’FE’x then /* DO or DONT */
if data_byte2=’03’x then /* Suppress GO Ahead */
data_out=data_out{’FFFB’x{data_byte2 /* WILL */

else /* any other option */
data_out=data_out{’FFFC’x{data_byte2 /* WONT */

else
if data_byte=’FC’x │ data_byte=’FB’x then /* WILL or WONT */
if data_byte2=’03’x then /* Suppress GO Ahead */
data_out=data_out{’FFFD’x{data_byte2 /* DO */

else /* any other option */
data_out=data_out{’FFFE’x{data_byte2 /* DONT */

else
if data_byte=’F2’x then /* data mark, synch */
do /* assume synch signal */
data_in=buffer /* clear previous data */
data_out=’’ /* no response sent */
end

startpos=index(data_ck,ff) /* look for ff */
if startpos=0 then
do /* no ff */
fffound=off
startpos=index(data_in,look_for) /* search for specific data */
if startpos>0 then /* found specific data */
notfound=off /* get out of loop */

end /* no ff */
else

/* found ff, parse through commands */
data_ck=substr(data_ck,startpos+1,length(data_ck)-startpos)

end /* fffound on */
if data_out¬;=’’ then /* check if data to transmit */
type data_out /* transmit data */

end
endtxt

ids: msgutbl
’userid1’
’userid2’
’userid3’
’userid4’
’userid5’
endutbl

pws: msgutbl
’pswd1’
’pswd2’
’pswd3’
’pswd4’
’pswd5’
endutbl

cmds: msgutbl
’cd /usr/lpp’
’ls’
’logout’
endutbl

402 Creating Workload Simulator Scripts

CPI-C transaction program simulation
This following WSim script simulates a CPI-C client transaction program
communicating with two CPI-C server transaction programs. The name used for
this model by the WSim/ISPF Interface is CPIC.

Network definition
* CPI-C Transaction Program simulation
**
* Network Configuration: CPI-C Transaction Program simulation (CPIC) *
* *
* Description: This WSim script will simulate a CPI-C client *
* Transaction Program communicating with two CPI-C *
* server Transaction Programs. The client sends *
* data to one server and receives data from the other. *
* The sync-level is "none" on the first conversation, *
* and "confirm" on the second conversation. *
* *
* To illustrate that a network-wide Side Information *
* Table can be overridden at the APPCLU level, the *
* network-wide table contains an entry that points *
* to a non-existent TP. This entry is then overridden *
* by the APPCLU statement. *
* *
* Some values may need to be changed in this data set in *
* order to operate in your environment. They are *
* indicated by the "==> " string. *
* *
* Restrictions/Dependencies: *
* 1) The APPLID names used in this network (APPLID1 and APPLID2) *
* must be defined to VTAM and must be active. *
* *
* Graphical Representation of Network: *
* *
* APPCLU: APPCLU1 APPCLU: APPCLU2 *
* +----------------------+ +---------------------+ *
* | | | | *
* | +--------------+ | conversation 1 | +-------------+ | *
* | | ===========================> TP: TPSERV1 | | *
* | | | | mode=#inter | +-------------+ | *
* | | TP: TPCLIENT | | | | *
* | | | | conversation 2 | +-------------+ | *
* | | ===========================> TP: TPSERV1 | | *
* | +--------------+ | mode=#batch | +-------------+ | *
* | | | | *
* +----------------------+ +---------------------+ *
* *
* Notes: *
* 1. Conversation 1 uses mode name #INTER. The conversation *
* sync-level is "none". *
* 2. Conversation 2 uses mode name #BATCH. The conversation *
* sync-level is "confirm". *
* 3. The CNOS operand on the APPCLU1 definition is only required *
* if you want to control the number of sessions. If the operand *
* is not specified, sessions will be managed by WSim as required *
* by the simulation. *
* *
**

--
* Network statement operands. *
--
CPIC NTWRK HEAD=’CPI-C NETWORK MODEL’,

ITIME=1, * Ntwrk interval rpt every minute *

Chapter 27. Network models 403

--
* TP operands coded on the network statement. These values will *
* be the default for every TP in the network. *
--

TPSTATS=YES, * Keep stats for all TP instances *
CPITRACE=VERB * Trace CPI-C verbs in the log *

--
* Define a network-wide Side Information Table. *
--

SIDEINFO
SIDEENT DESTNAME=SERVER1,MODENAME=#INTER,

LUNAME=APPLID2,TPNAME=TPSERVER
SIDEENT DESTNAME=SERVER2,MODENAME=#BATCH,

LUNAME=APPLID2,TPNAME=TPSERV2
SIDEEND

--
* Define the Transaction Program paths. *
--
CLIENT PATH CLNTDCK * Define the CLIENT TP path *
SERVER1 PATH SERV1DCK * Define the SERVER1 TP path *
SERVER2 PATH SERV2DCK * Define the SERVER2 TP path *
--

--
* Define the network resources. *
* *
* ==> CHANGE the APPLID names APPLID1 and APPLID2 as needed to match *
* names in your environment. If you change APPLID2, also change *
* the LUNAME specification in the SIDEINFO and CNOS operands to *
* match this name. These names must be defined to VTAM. *
--
APPCLU1 APPCLU APPLID=APPLID1, * APPC LU; VTAM APPLID is APPLID1 *

SIDEINFO=((DESTNAME=SERVER1,MODENAME=#INTER,
LUNAME=APPLID2,TPNAME=TPSERV1)),

* * Override SERVER1 dest name *
CNOS=((LUNAME=APPLID2,MODENAME=#INTER,

SESSIONS=2,CWL=1,CWP=1))
* * Specify CNOS values *
TPC TP TPNAME=TPCLIENT, * TP name is TPCLIENT *

PATH=(CLIENT), * TP is defined by CLIENT path *
TPTYPE=CLIENT, * TP type is CLIENT *
INSTANCE=(1,1) * 1 initial TP instance *

APPCLU2 APPCLU APPLID=APPLID2 * APPC LU; VTAM APPLID is APPLID2 *

TPS1 TP TPNAME=TPSERV1, * TP name is TPSERV1 *
PATH=(SERVER1), * TP is defined by SERVER1 path *
TPTYPE=SERVER, * TP type is SERVER *
INSTANCE=(0,1) * No initial TP instances *

TPS2 TP TPNAME=TPSERV2, * TP name is TPSERV2 *
PATH=(SERVER2), * TP is defined by SERVER2 path *
TPTYPE=SERVER, * TP type is SERVER *
INSTANCE=(0,1) * No initial TP instances *

Message generation decks
CLNTDCK MSGTXT
**
* Message deck defining the TPCLIENT Transaction Program. *
**
*
* Device save area usage:

404 Creating Workload Simulator Scripts

* 1=conversation ID
* 2=destination name
* 3=send buffer
* 4=receive buffer
*
* Device counter usage:
* dc1=return code
* dc2=send length
* dc3=request-to-send received
* dc4=sync-level
* dc5=requested length
* dc6=data received
* dc7=received length
* dc8=status received
*

WTO (Transaction Program $TPID$ starting.)
*
**
* Initialize and allocate a conversation with TPSERV1. *
*
*
* Set the symbolic destination name to "SERVER1".

DATASAVE AREA=2,TEXT=(SERVER1)
*
* Initialize the conversation.

CMINIT(1,2,DC1)
*
* Allocate the conversation; the sync-level defaults to "none",
* and the conversation type defaults to "mapped".
*

CMALLC(1,DC1)
*
* Setup the send buffer and length.

DATASAVE AREA=3,TEXT=(LU $APPCLUID$, TP $TPID$$TPINSTNO$:)+
(Data sent from client to server.) * Send buffer

SET DC2=LENG(3) * Send length
*
* Send data to TPSERV1.

CMSEND(1,3,DC2,DC3,DC1)
*
* Deallocate the conversation with TPSERV1.

CMDEAL(1,DC1)
*
**
* Initialize and allocate a conversation with TPSERV2. *
*
* Set the symbolic destination name to "SERVER2".

DATASAVE AREA=2,TEXT=(SERVER2)
*
* Initialize the conversation.

CMINIT(1,2,DC1)
*
* Set the conversation sync-level to "confirm".

SET DC4=1 * Sync-level
CMSSL(1,DC4,DC1)

*
* Allocate the conversation; the conversation type defaults
* to "mapped".

CMALLC(1,DC1)
*
* Set requested length for receive.

SET DC5=100
*
* Receive data from TPSERV2.

CMRCV(1,4,DC5,DC6,DC7,DC8,DC3,DC1)
*
* Confirm the data was received.

Chapter 27. Network models 405

CMCFMD(1,DC1)
*
* Receive the confirm deallocate status.

CMRCV(1,4,DC5,DC6,DC7,DC8,DC3,DC1)
*
* Confirm the deallocate

CMCFMD(1,DC1)
*

WTO (Transaction Program $TPID$ complete.)
WTO (Simulation complete.)

*
ENDTXT

SERV1DCK MSGTXT
**
* Message deck defining the TPSERV1 Transaction Program. *
**
*
* Device save area usage:
* 1=conversation ID
* 2=receive buffer
*
* Device counter usage:
* dc1=return code
* dc2=requested length
* dc3=data received
* dc4=received length
* dc5=status received
* dc6=request-to-send received
*

WTO (Transaction Program $TPID$ starting.)
*
* Accept the conversation with TPCLIENT.

CMACCP(1,DC1)
*
* Set requested length for receive.

SET DC2=100
*
* Receive data from TPCLIENT.

CMRCV(1,2,DC2,DC3,DC4,DC5,DC6,DC1)
*

WTO (Transaction Program $TPID$ complete.)
*

ENDTXT

SERV2DCK MSGTXT
**
* Message deck defining the TPSERV2 Transaction Program. *
**
*
* Device save area usage:
* 1=conversation ID
* 2=receive buffer
* 3=send buffer
*
* Device counter usage:
* dc1=return code
* dc2=requested length
* dc3=data received
* dc4=received length
* dc5=status received
* dc6=request-to-send received
* dc7=send length
*

WTO (Transaction Program $TPID$ starting.)
*
* Accept the conversation with TPCLIENT.

406 Creating Workload Simulator Scripts

CMACCP(1,DC1)
*
* Set requested length for receive.

SET DC2=100
*
* Receive send status from TPCLIENT.

CMRCV(1,2,DC2,DC3,DC4,DC5,DC6,DC1)
*
* Setup the send buffer and length.

DATASAVE AREA=3,TEXT=(LU $APPCLUID$, TP $TPID$$TPINSTNO$:)+
(Data sent from server to client.) * Send buffer

*
SET DC7=LENG(3) * Send length

*
* Send data to TPCLIENT.

CMSEND(1,3,DC7,DC6,DC1)
*
* Request confirmation that the data was received.

CMCFM(1,DC6,DC1)
*
* Deallocate the conversation with TPCLIENT.

CMDEAL(1,DC1)
*

WTO (Transaction Program $TPID$ complete.)
*

ENDTXT

STL procedures
@PROGRAM=CPIC

/***
* Include the CPI-C variable and constant definition files. *
* *
* ==> The CPICVAR and CPICCON files must be in your STL includes *
* dataset. They are located in the WSim sample dataset. *
***/
@include cpicvar
@include cpiccon

CLNTDCK: msgtxt
/***
* STL deck defining the TPCLIENT Transaction Program. *
***/

say ’Transaction Program ’tpid() ’starting.’

/**/
/* Initialize and allocate a conversation with TPSERV1. */

/* Set the symbolic destination name to "SERVER1". */
sym_dest_name=’SERVER1’

/* Initialize the conversation. */
CMINIT (conversation_ID, sym_dest_name, return_code)
/* Allocate the conversation; the sync-level defaults to "none", */
/* and the conversation type defaults to "mapped". */
CMALLC (conversation_ID, return_code)

/* Setup the send buffer and length. */
send_buffer = ’LU’ appcluid()’, TP’ tpid()tpinstno()||,

’: Data sent from client to server.’
send_length = length(send_buffer)

/* Send data to TPSERV1. */
CMSEND (conversation_ID, send_buffer, send_length,,

request_to_send_received, return_code)

Chapter 27. Network models 407

/* Deallocate the conversation with TPSERV1. */
CMDEAL (conversation_ID, return_code)

/**/
/* Initialize and allocate a conversation with TPSERV2. */

/* Set the symbolic destination name to "SERVER2". */
sym_dest_name=’SERVER2’

/* Initialize the conversation. */
CMINIT (conversation_ID, sym_dest_name, return_code)

/* Set the conversation sync-level to "confirm". */
CMSSL (conversation_ID, cm_confirm, return_code)

/* Allocate the conversation; the conversation type defaults to */
/* "mapped". */
CMALLC (conversation_ID, return_code)

/* Receive data from TPSERV2. */
CMRCV (conversation_ID, receive_buffer, 100, data_received,,

received_length, status_received,,
request_to_send_received, return_code)

/* Confirm the data was received. */
CMCFMD (conversation_ID, return_code)

/* Receive the confirm deallocate status. */
CMRCV (conversation_ID, receive_buffer, 100, data_received,,

received_length, status_received,,
request_to_send_received, return_code)

/* Confirm the deallocate */
CMCFMD (conversation_ID, return_code)

say ’Transaction Program ’tpid() ’complete.’
say ’Simulation complete.’

endtxt

SERV1DCK: msgtxt
/***
* STL deck defining the TPSERV1 Transaction Program. *
***/

say ’Transaction Program ’tpid() ’starting.’

/* Accept the conversation with TPCLIENT. */
CMACCP (conversation_ID,,

return_code)

/* Receive data from TPCLIENT. */
CMRCV (conversation_ID,,

receive_buffer,,
100,,
data_received,,
received_length,,
status_received,,
request_to_send_received,,
return_code)

say ’Transaction Program ’tpid() ’complete.’

endtxt

SERV2DCK: msgtxt

408 Creating Workload Simulator Scripts

/***
* STL deck defining the TPSERV2 Transaction Program. *
***/

say ’Transaction Program ’tpid() ’starting.’

/* Accept the conversation with TPCLIENT. */
CMACCP (conversation_ID,,

return_code)

/* Set requested length for receive. */
requested_length=100
/* Receive send status from TPCLIENT. */
CMRCV (conversation_ID,,

receive_buffer,,
requested_length,,
data_received,,
received_length,,
status_received,,
request_to_send_received,,
return_code)

/* Setup the send buffer and length. */
send_buffer = ’LU’ appcluid()’, TP’ tpid()tpinstno()||,

’: Data sent from server to client.’
send_length = length(send_buffer)

/* Send data to TPCLIENT. */
CMSEND (conversation_ID,,

send_buffer,,
send_length,,
request_to_send_received,,
return_code)

/* Request confirmation that the data was received. */
CMCFM (conversation_ID,,

request_to_send_received,,
return_code)

/* Deallocate the conversation with TPCLIENT. */
CMDEAL (conversation_ID,,

return_code)

say ’Transaction Program ’tpid() ’complete.’

endtxt

Chapter 27. Network models 409

410 Creating Workload Simulator Scripts

Part 6. Appendixes

© Copyright IBM Corp. 1989, 2015 411

412 Creating Workload Simulator Scripts

Glossary

This glossary includes terms and definitions from
the IBM Vocabulary for Data Processing,
Telecommunications, and Office Systems,
GC20-1699-6. Further definitions are from the
following volumes and reports. The symbols
follow the definitions to which they refer.
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are
identified by the symbol (A) after the
definition.

v Definitions from draft proposals and working
papers under development by the International
Standards Organization, Technical Committee
97, Subcommittee 1 are identified by the
symbol (TC97).

v Definitions from draft international standards,
draft proposals, and working papers in
development by the ISO/TC97/SC1 are
identified by the symbol (T), indicating final
agreement has not yet been reached among
participating members.

v Definitions from the CCITT Sixth Plenary
Assembly Orange Book, Terms and Definitions and
working documents published by the
International Consultative Committee on
Telegraph and Telephone of the International
Telecommunication Union, Geneva, 1980 are
identified by the symbol (CCITT/ITU).

v Definitions from published sections of the ISO
Vocabulary of Data Processing, developed by the
International Standards Organization, Technical
Committee 97, Subcommittee 1 and from
published sections of the ISO Vocabulary of
Office Machines, developed by subcommittees of
ISO Technical Committee 95, are indicated by
the symbol (ISO).

A

AID Attention identifier.

American National Standard Code for
Information Interchange (ASCII)

The standard code, using a coded
character set consisting of 7-bit coded
characters (8 bits including parity check),

used for information interchange among
data processing systems, data
communication systems, and associated
equipment. The ASCII set consists of
control characters and graphic
characters. (A)

API Application program interface.

application program interface (API)
(1) The formally defined programming
language interface between an IBM
system control program or licensed
program and its user. (2) The interface
through which an application program
interacts with an access method. In
VTAM, it is the language structure used
in control blocks so that application
programs can reference them and be
identified to VTAM.

ASCII American National Standard Code for
Information Interchange.

attention identifier (AID)
A code that the terminal sends in the
inbound data stream to identify the
operator action or structured field
function that caused the data stream to be
sent to the application program. An AID
is always sent as the first byte of the
inbound data stream. Structured fields in
the data stream may also contain an AID.

attribute value
A code immediately following the
attribute type in the data stream that
specifies a particular characteristic from
the set defined by the attribute type.

available
In VTAM, pertaining to a logical unit that
is active, connected, enabled, and not at
its session limit.

Availability Monitor (AVMON)
A sample set of WSim network definition
statements and message generation decks
provided with WSim which monitors the
availability of host application
subsystems.

AVMON
Availability Monitor.

© Copyright IBM Corp. 1989, 2015 413

B

bind In SNA, a request to activate a session
between two logical units (LUs).

C

carriage return (CR)
The operation that prepares for the next
character to be printed or displayed at the
specified first position on the same
line. (A)

CD Change direction.

chain A group of logically linked records, for
example, an SNA message.

character set
(1) A defined collection of characters in a
loadable or nonloadable set selected by
means of a local character set identifier.
(2) An attribute type in the extended field
and character attributes. (3) An attribute
passed between session partners in the
Start Field Extended, Modify Field, and
Set Attribute orders.

cluster controller
A device that can control the
input/output operations of more than one
device connected to it. A cluster controller
can be controlled by a program stored
and executed in the unit; for example, the
IBM 3601 Finance Communication
Controller. Or it may be controlled
entirely by hardware; for example, the
IBM 3272 Control Unit.

Common Programming Interface for
Communications (CPI-C)

(1) In WSim, an application programming
interface (API) used to perform
program-to-program communications
using LU type 6.2 communication
protocols. (2) An evolving application
programming interface (API), embracing
functions to meet the growing demands
from different application environments
and to achieve openness as an industry
standard for communications
programming. CPI-C provides access to
interprogram services such as (a) sending
and receiving data, (b) synchronizing
processing between programs, and (c)
notifying a partner of errors in the
communication.

CPI-C Common programming interface for
communications.

CR Carriage return.

D

DAF Destination address field.

data flow control (DFC)
In SNA, a request/response unit (RU)
category used for requests and responses
exchanged between the data flow control
layer in one half-session and the data
flow control layer in the session partner.

data set
The major unit of data storage and
retrieval, consisting of a collection of data
in one of several prescribed arrangements
and described by control information to
which the system has access.

DBCS Double-byte character set.

DDNAME
Data definition name.

DE Device-end.

destination address field (DAF)
In SNA, a field in a FID0 or FID1
transmission header that contains the
network address of the destination.

destination logical unit (DLU)
The logical unit to which data is to be
sent. Contrast with origin logical unit
(OLU).

device-end (DE)
In channel operations, a signal from an
I/O device that denotes the end of an
operation.

DFC Data flow control.

direct access storage device (DASD)
A device in which the access time is
effectively independent of the location of
the data. For example, a disk.

Display Monitor Facility
A VTAM application program within
WSim that displays simulated 3270 screen
images on a monitor. It is used to monitor
a simulation dynamically, enabling a user
to debug scripts and view interactions
with host applications.

DLU Destination logical unit.

domain
(1) An access method, its application
programs, communication controllers,
connecting lines, modems, and attached

414 Creating Workload Simulator Scripts

terminals. (2) In SNA, a system services
control point (SSCP) and the physical
units (PUs), logical units (LUs), links, link
stations, and all the associated resources
that the SSCP has the ability to control by
means of activation requests and
deactivation requests.

double-byte character set (DBCS)
A set of characters in which each
character is represented by two bytes.
Languages such as Japanese, Chinese, and
Korean, which contain more symbols that
can be represented by 256 code points,
require double-byte character sets.
Because each character requires two bytes,
the typing, display, and printing of DBCS
characters requires hardware and
programs that support DBCS.

E

EB End bracket.

EBCDIC
Extended binary-coded decimal
interchange code.

end bracket (EB)
In SNA, the value (binary 1) of the end
bracket indicator in the request header
(RH) of the first request of the last chain
of a bracket; the value denotes the end of
the bracket.

end-of-transmission-block character (ETB)
(1) A transmission control character used
to indicate the end of a transmission
block of data when data are divided into
such blocks for transmission purposes. (2)
In binary synchronous communication,
the transmission control character used to
end a block of records that began with the
start-of-text character.

ETB End-of-transmission-block character.

event (1) An occurrence of significance to a task;
typically, the completion of an
asynchronous operation, such as an
input/output operation. (2) In WSim, a
named indicator/flag which can be used
for communications among terminal
scripts.

extended attribute buffer (EAB)
The buffer in which the extended field
attribute for the 3270 kanji display field is
stored.

extended binary-coded decimal interchange code
(EBCDIC)

A coded character set of 256 8-bit
characters.

extended color
(1) A capability that allows color
terminals to display or print fields or
characters in colors using extended field
and character attributes. (2) An attribute
type in the extended field attribute and
character attribute.

extended field attribute
Additional field definition to the field
attribute that controls defining additional
properties such as color, highlighting,
character set, and field validation. The
extended field attribute is altered by
information passed in the Start Field
Extended and Modify Field orders.

extended highlighting
(1) A function that provides blink, reverse
video, and underscore for emphasizing
fields or characters on devices supporting
extended field attributes and character
attributes. (2) An attribute type in the
extended field attribute and character
attribute. (3) An attribute passed between
session partners in the Start Field
Extended, Modify Field, and Set Attribute
orders.

F

facility
(1) An operational capability, or the
means for providing such a capability. (T)
(2) A service provided by an operating
system for a particular purpose; for
example, the checkpoint/restart facility.

FFW Field format word.

FID SNA format identification.

File Transfer Protocol (FTP)
In the Internet suite of protocols, an
application layer protocol that uses TCP
and Telnet services to transfer bulk-data
files between machines or hosts.

FM Function management.

FMD Function management data.

format identification (FID) field
In SNA, a field in each transmission
header (TH) that indicates the format of
the TH; that is, the presence or absence of

Glossary 415

certain fields. TH formats differ in
accordance with the types of nodes
between which they pass.

formatted system services (FSS)
A portion of VTAM that provides certain
system services as a result of receiving a
field-formatted command, such as an
Initiate or Terminate command.

frame check sequence (FCS)
A field immediately preceding the closing
flag sequence of a frame that contains a
bit sequence checked by the receiver to
detect transmission errors.

FSS Formatted system services.

FTP File transfer protocol.

function control sequence (FCS)
In System/38 (RJEF) MTAM, a control
character used to control the flow of
individual function streams.

function management data (FMD)
In SNA, a request unit (RU) category
used for end-user data exchanged
between logical units (LUs) and for
requests and responses exchanged
between network services components of
LUs, physical units (PUs), and system
services control points (SSCPs).

H

half duplex
In data communication, pertaining to an
alternate, one way at a time, independent
transmission (A); Contrast with duplex.

I

I/O Input/output.

ICV Initial chaining value.

ILU Initiating logical unit.

IMS/VS
Information Management System/Virtual
Storage.

Information Management System/Virtual
Storage (IMS/VS)

A general purpose system that enhances
the capabilities of OS/VS for batch
processing and telecommunication and
allows users to access a
computer-maintained data base through
remote terminals.

initiating logical unit (ILU)
The logical unit that initiates a session
with another logical unit or between two
other logical units.

input/output (I/O)
(1) Pertaining to a device whose parts can
perform an input process and an output
process at the same time. (2) Pertaining to
a functional unit or channel involved in
an input process, output process, or both,
concurrently or not, and to the data
involved in such a process. Note: The
phrase input/output may be used in place of
input/output data, input/output signals, and
input/output process when such a usage is
clear in context. (3) Pertaining to input,
output, or both.

instance
A copy of a transaction program that is
executing on a given logical unit. If
multiple instances are supported on a
logical unit, multiple copies of the same
transaction program can execute
simultaneously.

Interactive System Productivity Facility (ISPF)
An IBM licensed program that serves as a
full-screen editor and dialogue manager.
Used for writing application programs, it
provides a means of generating standard
screen panels and interactive dialogues
between the application programmer and
terminal user.

intermessage delay
The elapsed time between receipt of a
system response at a terminal and the
time when a new transaction is entered.
Synonymous with think time.

Inter-User Communications Vehicle (IUCV)
A VM facility for passing data between
virtual machines and VM components.

IPM Isolated pacing message.

ISPF Interactive System Productivity Facility.

IUCV Inter-User Communications Vehicle
(IUCV).

J

JCL Job control language.

job control language (JCL)
A problem-oriented language designed to
express statements in a job that are used

416 Creating Workload Simulator Scripts

to identify the job or describe its
requirements to an operating system. (A)

L

LF Line feed.

line feed (LF)
The incremental relative movement
between the paper carrier and the type
carrier in a direction perpendicular to the
writing line.

Log Compare Utility
A utility that enables WSim to compare
3270 display records from two log data
sets and report the differences.

logic test
In WSim, a conditional test on an input or
output message, a counter, or other item
using theWSim IF statement. The IF
actions can be used to control the
message generation process.

logical unit (LU)
(1) A port through which a user gains
access to the services of a network. (2) In
SNA, a port through which an end user
accesses the SNA network and the
functions provided by system services
control points (SSCPs). An LU can
support at least two sessions—one with
an SSCP and one with another LU—and
may be capable of supporting many
sessions with other logical units.

Loglist Utility
A utility that enables WSim to produce a
formatted report of the log data set.

LU Logical unit.

LUSTAT
Logical unit status.

M

magnetic stripe reader (MSR)
A device that reads precoded information
from a magnetic stripe. The device can be
hand-held or fixed.

MDT Modified data tag.

message generation
In WSim, the process of executing
statements that generate messages from
the resources being simulated by WSim.

message generation statements
The collection of statements that define

the actions to be performed by WSim,
including message generation and logic
testing.

MF Modify field.

MLU Multiple logical units.

modified data tag (MDT)
(1) An indicator, associated with each
input or output/input field in a displayed
record, that is set ON when data are
keyed into the field. The modified data
tag is maintained by the display device
and can be used by the program using
the file. (2) In 3270, a bit in each input
field that, when set, causes that field to be
transferred to the host system.

modify field (MF)
A 3270 data stream order that specifies
the field and extended field attributes to
be modified without having to respecify
all attributes of the field.

module
A program unit that is discrete and
identifiable with respect to compiling,
combining with other units, and loading;
for example, the input to, or output from,
an assembler, compiler, linkage editor, or
executive routine. (A)

MSR Magnetic stripe reader.

MTRC
Message generation trace record.

Multiple Virtual Storage (MVS)
An IBM licensed program whose full
name is the Operating System/Virtual
Storage (OS/VS) with Multiple Virtual
Storage/System Product for System/370*.
It is a software operating system
controlling the execution of programs.

MVS Multiple Virtual Storage.

N

NC Network control.

NetView Performance Monitor (NPM)
An IBM licensed program that collects,
monitors, analyzes, and displays data
relevant to the performance of a VTAM
telecommunication network. It runs as an
online VTAM application program.

network control (NC)
In SNA, an RU category used for requests
and responses exchanged for such

Glossary 417

purposes as activating and deactivating
explicit and virtual routes and sending
load modules to adjacent peripheral
nodes.

network definition statements
A collection of statements that define the
network configuration WSim uses when
processing the message generation source
statements.

network services (NS)
In SNA, the services within network
addressable units (NAUs) that control
network operation through SSCP-SSCP,
SSCP-PU, and SSCP-LU sessions.

node (1) In SNA, an endpoint of a link or
junction common to two or more links in
a network. Nodes can be distributed to
host processors, communication
controllers, cluster controllers, or
terminals. Nodes can vary in routing and
other functional capabilities. (2) In VTAM,
a point in a network defined by a
symbolic name.

NRF Network Routing Facility.

NS Network services.

O

OAF Origin address field.

operating system (OS)
Software that controls the execution of
programs. An operating system may
provide services such as resource
allocation, scheduling, input/output
control, and data management. Note:
Although operating systems are
predominantly software, partial or complete
hardware implementations are possible. (A)

origin address field (OAF)
In SNA, a field in a FID0 or FID1
transmission header that contains the
address of the originating network
addressable unit (NAU).

OS Operating system.

P

PA Program attention.

partitioned data set (PDS)
A data set in direct access storage that is
divided into partitions, called members,

each of which can contain a program, part
of a program, or data.

PDS Partitioned data set.

PEL Picture element.

PF Program function.

physical unit (PU)
In SNA, a type of network addressable
unit (NAU). A physical unit (PU)
manages and monitors the resources (such
as attached links) of a node, as requested
by a system services control point (SSCP)
through an SSCP-PU session. An SSCP
activates a session with the physical unit
in order to indirectly manage, through the
PU, resources of the node such as
attached links.

physical unit type
In SNA, the classification of a physical
unit (PU) according to the type of node in
which it resides. The physical unit type is
the same as its node type; that is, a type 1
physical unit resides in a type 1 node,
and so forth.

picture element (PEL)
(1) In computer graphics, the smallest
element of a display surface that can be
independently assigned color and
intensity. (TC97) (2) The area of the finest
detail that can be reproduced effectively
on the recording medium.

PLU Primary logical unit.

primary logical unit (PLU)
In SNA, the logical unit (LU) that
contains the primary half-session for a
particular LU-LU session. Each session
must have a PLU and secondary logical
unit (SLU). The PLU is the unit
responsible for the bind and is the
controlling LU for the session. A
particular LU may contain both primary
and secondary half-sessions for different
active LU-LU sessions. Contrast with
secondary logical unit (SLU).

programmed symbols (PS)
In the 3270 Information Display System,
an optional feature that stores up to six
user-definable, program-loadable
character sets of 190 characters each in
terminal read/write storage for display or
printing by the terminal.

PS Programmed symbols.

418 Creating Workload Simulator Scripts

PU Physical unit.

R

record (1) A set of data treated as a unit (TC97);
for example, in stock control, each invoice
could constitute one record. (2) In VTAM,
the unit of data transmission for
record-mode. A record represents
whatever amount of data the transmitting
node chooses to send. (3) In Series/1*, a
portion of a data set accessed at the
logical level (GET/PUT).

request/response header (RH)
In SNA, control information preceding a
request/response unit (RU), that specifies
the type of RU (request unit or response
unit) and contains control information
associated with that RU.

request/response unit (RU)
In SNA, a generic term for a request unit
or a response unit.

request unit (RU)
(1) In SNA, a message unit that contains
control information, such as a request
code, or function management (FM)
headers, end-user data, or both. (2) In
DPCX, the smallest unit of data or control
information.

resource
(1) Any facility of the computing system
or operating system required by a job or
task, and including main storage,
input/output devices, the processing unit,
data sets, and control or processing
programs. (2) In the NetView program,
any hardware or software that provides
function to the network.

Response Time Utility
A utility that enables WSim to analyze
response times for activities on the log
data set.

response unit (RU)
In SNA, a message unit that
acknowledges a request unit; it may
contain prefix information received in a
request unit. If positive, the response unit
may contain additional information (such
as session parameters in response to
BIND session), or if negative, contains
sense data defining the exception
condition.

return code
A code used to influence the execution of
succeeding instructions. (A)

RH Request header or response header.

RR Receive ready.

RU Request unit or response unit.

S

SA Set attribute.

same-domain
Refers to communication between entities
in the same SNA domain. Contrast with
cross-domain.

SBI Stop Bracket Initiation.

SC Session Control.

script See WSim script.

Script Generator Utility
A utility that enablesWSim to convert
data captured from a system into message
generation scripts.

SDT Start data traffic.

secondary logical unit (SLU)
In SNA, the logical unit (LU) that
contains the secondary half-session for a
particular LU-LU session. An LU may
contain secondary and primary
half-sessions for different active LU-LU
sessions. Contrast with primary logical
unit (PLU).

session control (SC)
In SNA, (1) One of the components of
transmission control. Session control is
used to purge data flowing in a session
after an unrecoverable error occurs, to
resynchronize the data flow after such an
error, and to perform cryptographic
verification. (2) A request unit (RU)
category used for requests and responses
exchanged between the session control
components of a session and for session
activation and deactivation requests and
responses.

SFE Start field extended.

SI Shift In. Used with DBCS. This is the
X'0F' character that ends DBCS data.

Simple TCP protocol (STCP)
In WSim, a protocol providing a means of
transferring data to and from simulated

Glossary 419

clients by way of TCP/IP connections
without any manipulation of the data
other than that provided by the script
itself.

single-domain network
In SNA, a network with one system
services control point (SSCP). Contrast
with multiple-domain network.

SLU Secondary logical unit.

SNA Systems Network Architecture.

SO Shift Out. Used with DBCS. This is the
X'0E' character that begins DBCS data.

SOH Start of header.

start of heading character (SOH)
A transmission control character used as
the first character of a message
heading. (A)

start of text character (STX)
A transmission control character that
precedes a text and can be used to
terminate the message heading. (A)

STCP Simple TCP Protocol.

STL Structured Translator Language.

STL Translator
In WSim, a utility that acts as the STL
translator and translates STL statements
into message generation source
statements.

Structured Translator Language (STL)
A set of conventions and rules for writing
syntactically allowable statements that
will create message generation source
statements.

STX Start of text.

Systems Network Architecture (SNA)
The description of the logical structure,
formats, protocols, and operational
sequences for transmitting information
units through and controlling the
configuration and operation of networks.

T

TCP/IP
Transmission Control Protocol/Internet
Protocol.

TH Transmission header.

think time
The elapsed time between receipt of a

system response at a terminal and the
time when a new transaction is entered.
Synonym for intermessage delay.

time sharing option (TSO)
An optional configuration of the
operating system that provides
conversational time sharing from remote
stations in a network using VTAM.

TP Transaction program.

transaction program (TP)
In WSim, a transaction program is any
program that uses LU type 6.2
communication protocols to communicate
with another program. Transaction
programs are implemented in WSim
using the CPI-C application program
interface.

Transmission Control Protocol/Internet Protocol
(TCP/IP)

A suite of protocols designed to allow
communication between networks
regardless of the technologies
implemented in each network.

transmission header (TH)
In SNA, control information, optionally
followed by a basic information unit
(BIU) or a BIU segment, that is created
and used by path control to route
message units and to control their flow
within the network.

TSO Time sharing option.

U

unformatted system services (USS)
In SNA products, a system services
control point (SSCP) facility that translates
a character-coded request, such as a logon
or logoff request into a field-formatted
request for processing by formatted
system services and translates
field-formatted replies and responses into
character-coded requests for processing by
a logical unit. Contrast with formatted
system services.

user table
In WSim, one or more text data entries
contained in a table format which may be
referenced for logic testing and message
generation.

USS Unformatted system services.

UTI User time interval.

420 Creating Workload Simulator Scripts

V

Virtual Telecommunications Access Method
(VTAM)

An IBM licensed program that controls
communication and the flow of data in an
SNA network. It provides single-domain,
multiple-domain, and interconnected
network capability.

VTAM
Virtual Telecommunications Access
Method.

W

ward 42
The portion of DBCS codes that
corresponds to those of SBCS. The first
byte is X'42'. The second byte is the
hexadecimal value of the corresponding
single-byte EBCDIC code.

WCC Write control character.

Workload Simulator (WSim)
IBM program product to simulate
terminals and networks. It enables the
user to test system performance and
evaluate network design.

write control character (WCC)
(1) A control character that follows a write
command in the 3270 data stream and
provides control information for executing
display and printer functions. (2) A
character used in conjunction with a
write-type command to specify that a
particular operation, or combination of
operations, is to be performed at a
display station or printer.

write-to-operator (WTO)
An optional user-coded service that
enables the writing of a message to the
system console operator that informs the
operator of errors and unusual system
conditions that may need correcting.

WSF Write structured field.

WSim Workload Simulator.

WSim network
The set of statements defining an entire
network, including both the network
definition statements and the message
generation source statements. Should not
be confused with a packet switching
network.

WSim script
The set of statements defining an entire
network, including both the network
definition statements and the message
generation source statements.

WTO Write-to-operator.

X

XMIT Transmit.

Glossary 421

422 Creating Workload Simulator Scripts

Bibliography

The following manuals provide additional information about the definition and
operation of networks simulated by WSim:

WSim Library
WSim User's Guide, SC31-8948

WSim Messages and Codes, SC31-8951

Creating WSim Scripts, SC31-8945

WSim Script Guide and Reference, SC31-8946

WSim Utilities Guide, SC31-8947

WSim User Exits, SC31-8950

WSim Test Manager User's Guide and Reference, SC31-8949

Related publications
IBM 3270 Information Display System, GA23-0204

IBM 3270 Information Display Unit, GV20-9707

Systems Network Architecture: Formats, GA27-3136

OS/VS2/ MVS System Programming Library: Utilities, GC26-3902

ACF/VTAM Installation and Resource Definition, SC27-0610

ACF/VTAM Network Implementation Guide, SC31-6419

Random Number Generation and Testing, GC20-8011

I/O Installation—Physical Planning for S/360 and S/370, GC22-7064

IBM TCP/IP for MVS User's Guide Version 3 Release 1 SC31-7136

Systems Application Architecture Common Programming Interface Communications
Reference, SC26-4399-06. (WSim does not support CPI-C functions that have been
added on later releases of this document.)

VTAM Programming for LU 6.2, SC31-6437

OS/VS2 JES2 Logic Manual, SY24-6000

IBM 5250 Information Display System Functions Reference Manual, SA21-9247

© Copyright IBM Corp. 1989, 2015 423

424 Creating Workload Simulator Scripts

Index

Special characters
$ATTR$ data field option 238
FM data field option 232
NL data field option 232
$RNUM$ data field option

using to specify a range of random
numbers 120

using with RN network definition
statement 120

$UTBL$ data field option
generating messages with 123
selecting entries with 123

Numerics
3270

Data Analysis/APL Character Set
lists of extended characters 271,

277
simulating 234

display records 264
extended functions, simulating 235
key options 232
SDLC terminal, simulating errors

in 233
3274 Local Clear key 232
3278 Magnetic Stripe Reader,

simulating 233

A
A (Alter) operator command

altering user time intervals with 157
operands 157
referencing message generation decks

with 250
signaling events with 211

activating logic tests 181
allocating data sets 16
altering

sequential processing 200
user time intervals with the A (Alter)

operator command 157
analyzing results

comparing 3270 display records 264
determining response times 266
using operator reports 260
using other monitoring

programs 259
using the Display Monitor

Function 269
using the Log Compare Utility 264
using the Loglist Utility 262
using WSim output 260

APL/Text Character Set, simulating 234
APLCSID operand 65
APPCLU

counter allocation 204
statement 37

AREA operand
on the DATASAVE statement 131
on the IF statement 170
on the LOG statement 200

ATRABORT operand on network
definition statements 251

ATRDECK operand on network
definition statements 251

attention key simulation 226
automatic

terminal recovery 87
UTI adjustment 77

AVMON (Availability Monitor)
description 319
modifying 321
processing 319
scripts

ACHKNETV 335
ACHKTSO 342
ACTRLNET 329
AFORTIME 331
ALOGNETV 334
ALOGTSO 341
AMONNETV 332
AMONTSO 338

STL procedures 344
constant declarations 347
procedure ACHKNETV 359
procedure ACHKTSO 366
procedure ACTRLNET 354
procedure ALOGNETV 358
procedure ALOGTSO 364
procedure AMONNETV 356
procedure AMONTSO 361
table declarations 353
utility procedures 367
variable declarations 349

summary reports 323

B
BASECSID operand 65
BRANCH statement 201

C
CALC statement 196
CALL statement 201
CANCEL statement 211
chaining messages 224
character set ID 65
CHARSET statement 234, 236
checklist for developing message

generation decks 103
CICS 23
CLEARPTN statement 236
CMND statement 225, 229
CMxxxx simulation statements 195, 197

coding
AREA operand on the DATASAVE

statement 131
comment field 110
DATASAVE statement 130
DBCS2SB function (DATASAVE

statement) 133
DBCSADD function (DATASAVE

statement) 133
DBCSADJ function (DATASAVE

statement) 133
DBCSDEL function (DATASAVE

statement) 133
DELAY

operand on network definition
statements 158

statement 159
DELETE function (DATASAVE

statement) 133
ENDTXT statement 111
IF operands

AREA 170
CURSOR 166
ELSE 173
EVENT 166
LENG 168
list of 168
LOC 166
LOCTEXT 172
SCANCNTR 179
STATUS=HOLD 183
TEXT 170
THEN 173
UTBL 178
UTBLCNTR 169, 178
WHEN 169

IF statement 113
INSERT function (DATASAVE

statement) 133
IUTI operand 156
LEFT function (DATASAVE

statement) 133
LENG operand on the DATASAVE

statement 132
LOC operand on the DATASAVE

statement 131
message generation decks 110

with delimiters 150
MSGTXT statement 111
name field 108
operand field 108
RATE statement 158
RIGHT function (DATASAVE

statement) 133
SB2DBCS function (DATASAVE

statement) 133
SB2MDBCS function (DATASAVE

statement) 133
scripts with intermessage delays 161
SETUTI statement 156
statement field 108

© Copyright IBM Corp. 1989, 2015 425

coding (continued)
TEXT

operand on the DATASAVE
statement 131

statement 112
TRANSLATE function (DATASAVE

statement) 133
WAIT statement 113

COLOR statement 235
combining types of data 117
comment field 110
CONCHAR operand on the MSGTXT

statement 112
conditional delimiters

CMND 148
ENDTXT 148
sending messages with 148, 149
TEXT 148

continuing
information over multiple statement

lines 109
messages 110

control statements
BRANCH 201
CALC 196
CALL 201
CANCEL 211
CMxxxx 195, 197
DATASAVE 196
DEACT 212
DELAY 197
described 116, 195, 219
ERROR 198
EVENT 209
EXIT 197
LABEL 201
list of 195
LOG 200
MONITOR 199
MSGTXT 195
ON 212
OPCMND 199
RESET 198
RESP 198
RETURN 202
RH 198
SET 202
SETSW 202
TH 198
using for specific devices 197
WTO 199

controlling
events 209
switches and counters 202

converting DBCS data 133
COUNT operand on the MSGTXT

statement 112
counters 73, 75

altering values with the SET
statement 202, 209

generating messages dynamically
with 125, 129

setting a counter
to a specific value or random

number 204
to EBCDIC data 207
to hexadecimal data 206

counters (continued)
setting a counter (continued)

to the cursor’s row, column, or
offset 208

to the index of the last item in a
user table 209

to the length of user area or save
area data 207

to the number of rows or columns
in a display 209

with multiplication, division, and
remainder division 204

setting values with the SET
statement 202

CPI-C 35
application programming interface

(API) 35
control statements 195, 197
conversation 37, 40

inbound 35
outbound 35

delimiters 138
example, with multiple-instance TPs

message generation decks 315
network definition statements 314
sample network 314
STL procedures 317

example, with single-instance TPs
message generation decks 309
network definition statements 308
sample network 307
STL procedures 311

IF statement restrictions 166
logical unit

partner LU name 35, 36, 37
type 6.2 (APPC) 40

logical unit (APPCLU statement) 37,
39

password (PASSWD operand) 37
session limit (CNOS operand) 37
side information (SIDEINFO

operand) 38
symbolic name (APPLID

operand) 37, 39
model 403
network definition considerations

CYCLIC operand on PATH
statement 40

DIST statement 40
sharing save areas and

counters 41
using counters 41
using literal values 41
using named constants 41
using network save areas 41

network generation STL example 42,
46

side information 36
on APPCLU statement 36, 38
statement group 37

simulation 37
activating 35, 40
coding 39
designing 39
logging 38
logical network configuration

figure 36

CPI-C (continued)
simulation (continued)

message deck 38
path 35, 36, 38, 40
repeating 36, 38, 40
stagger time 38
statistics 38
terminating 36, 40
trace information 36, 38
user control data (UCD) 38

statements
APPCLU 37, 39, 40
SIDEEND 37
SIDEENT 37
SIDEINFO 37
TP 36, 38, 40

Systems Application Architecture
CPI-C 35

transaction program
client 35, 38, 40
CNOS 37, 40
instance 35, 36, 38
message generation deck

example 46, 49
name 40
server 35, 38, 40
symbolic destination name 37

VTAM considerations
ACB 37, 41
access method control block

(ACB) 37
coordinating CPI-C and

VTAM 42
WSim differences from CPI-C 1.1 41

CM_SYNC_POINT conversation
synchronization level 41

maximum send length on mapped
conversations 41

creating self-checking scripts 190, 192
cursor movement, simulating 231
CURSOR statement 231
CYCLIC operand on network definition

statements 249
cyclic path selection 249

D
data

combining types of 117
entering into messages generated

manually 117
inserting into a message 134
saving in an area 130

data field options
$ATTR$ 238
$BADGE$ 119
$DSEQ$ 126
FN 232
$LSEQ$ 126
$MONTH$ 119
NL 232
$NSEQ$ 126
$RNUM$ 119
SEQ 126
TAB 232
$TSEQ$ 126
$UTBL$ 123

426 Creating Workload Simulator Scripts

data field options (continued)
$YEAR$ 119
syntax conventions 118
understanding 119

data sets, allocating 16
DATASAVE statement

converting DBCS data in a save area
with 133

manipulating data in a save area
with 133

placing data in a user or save area
with 130

using 196
DBCS

character set ID 65, 185
data, converting 133
operand 69
simulating devices 69, 241

DBCS2SB function on the DATASAVE
statement 133

DBCSADD function on the DATASAVE
statement 133

DBCSADJ function on the DATASAVE
statement 133

DBCSCSID operand 65
DBCSDEL function on the DATASAVE

statement 133
DEACT statement

coding example 212
deactivating events with 212
deactivating logic tests with 181

deactivating logic tests 181
defining

intermessage delays for specific
resources 158

selection of message generation
decks 248

user tables with the UTBL network
definition statement 122

DELAY
operand on network definition

statements 158
statement

coding 159
using 197

delay value
defined 154
specifying for individual

resources 158
DELETE

function on the DATASAVE
statement 133

statement 231
Delete key, simulating 231
delimiters

affecting the message generation
process 137

classifying 138
coding message generation decks

with 150
conditional 148, 149
CPI-C simulation 138, 139
described 115
interrupting message generation

with 139, 148
unconditional 139, 148
use of 137, 151

devices, simulating
IBM 3270 Information Display

System 52, 65
IBM 3290 Information Panel 65, 70
IBM 5250 Display System 70

display image, logging for formatting by
the Loglist Utility 241

Display Monitor Facility 241, 269
display terminal

following message generation
for 222

generating messages for 219
logic testing for 188

DIST network definition statement 249

E
E (execute) for THEN and ELSE on the IF

statement 175
ECHO script 289
ELSE operand on the IF statement

E (execute) on 175
IGNORE action on 178
on multiple IF statements 177
use of 173
VERIFY-(data) on 176

EMTRATE 77
end of run reports 261
ENDTXT statement, coding 111
Enter key, simulating 220
ENTER statement 220
entering

data for messages generated
manually 117

message text 109
operand names and values 109

ERROR statement 198
evaluating logic tests

using WHEN=IMMED 183
using WHEN=IN 184
using WHEN=OUT 184

EVENT
statement 209
WAIT indicator 146

events
coding examples 216
coding variable event names 212
controlling communication with 214
deactivating with the DEACT

statement 209
ON/SIGNAL facility 215
using to synchronize multiple

devices 216
WAIT/POST facility 214

execute for THEN or ELSE on the IF
statement 175

exit routines 89
EXIT statement 197
extended

color 235
highlighting 235

F
FE statement 75
field outlining 69

FILE statement 55
File Transfer Protocol (FTP) 49, 55, 304
fixed selection of table entries 123
FLDOUTLN operand 69
FRSTTXT operand on network definition

statements 250
FTP

defining file characteristics 55
example

network definition statements 303
sample network 303
STL procedures 305

generating FTP messages 56
foreign files or directories 56
supported FTP commands 56
using logic testing statements 56
using TYPE or TEXT

statements 56
model 394
network definition statements

FILE 55
function testing 102
future events 75

G
generating messages

dynamically 118, 136
with $UTBL$ 123
with index counters 127
with random numbers 119
with save and user areas 129
with sequence counters 126
with user tables 121

for display terminals 219
for simulated 3270 terminals 230
for SNA terminals 224
manually 117, 118
with the TEXT statement 117, 136

generating SENSE data 225, 226

H
HELP statement 242
HIGHLITE statement 235

I
IBM 3270

character set ID 65
Information Display System 229

display monitor facility 65
simulating 65

Terminal 232
IBM 3290 Information Panel

operands used to define 66
screen definition

character cell size (CCSIZE) 67
display size (DISPLAY) 67
screen size (UASIZE) 67
screen split 67

screen definition examples 67
simulating 65

IBM 5250 Display System
format table, formatting 71
generating messages for 242

Index 427

IBM 5250 Display System (continued)
logic testing 70, 243
screen image buffer, formatting 71
simulating 70, 71

errors in 244
using 242

IF message generation statement
activating logic tests 181
coding 113, 167
deactivating logic tests 181
defining logic tests 165
examples of coding 167
message-level logic tests 166
operands

AREA 170
CURSOR 166
ELSE 173
EVENT 166
LENG 168
list of 168
LOC 166, 171
RESP 228
SCANCNTR 179
STATUS=HOLD 183
TEXT 170
THEN 173
UTBL 178
UTBLCNTR 178
WHEN=IMMED 169
WHEN=IN 169
WHEN=OUT 169

IF network definition statement
coding 166
network-level logic tests 165

IF statement 82
IGNORE action for logic tests 178
IMS 23
Inactivity Report 261
INCLUDE network definition

statement 250
index counters

generating messages with 127, 129
incrementing the value of 127

indicators
INPUT INHIBITED 220
preserving over asynchronous IF

statements 145
QUIESCE 148
WAIT 144
WAIT EVENT 146

initiating sessions for SNA terminals 229
INPUT INHIBITED indicator 220
INSERT

function on the DATASAVE
statement 133

statement 231
insert key, simulating 231
INSTALL1 283
integrating decks with network

definitions 247, 258
Interactive Data Capture (IDC) 96
intermessage delays

altering user time intervals with A
(Alter) operator command 157

coding a script with 161
for individual resources 159

intermessage delays (continued)
referencing multiple user time

intervals 156
specifying 153
specifying delay values for individual

resources 158
specifying multiple user time

intervals 155
understanding 153
use of 153, 165
using THKTIME to determine the

start of 154
interval reports 260
ITPECHO 281
ITPSYSIN 17, 258
IUTI operand on network definition

statements 156

J
JUMP statement 236

L
LABEL statement 201
LCLEAR statement 232
LEFT function on the DATASAVE

statement 133
LENG operand

on the DATASAVE statement 132
on the IF statement 168

LOC operand
on the DATASAVE statement 131
on the IF statement 171
on the IF statement, coding 171, 172

LOCTEXT operand 172
Log Compare Utility 264
log data set

comparing 3270 display records 264
formatting 262
using 262

LOG statement 200
logic tests 81, 84

activating 181
deactivating 181
defining 165
evaluating

with WHEN=IMMED 183
with WHEN=IN 184
with WHEN=OUT 184

examples 186, 190
for display terminal using

WHEN=IMMED 188
for IBM 3270 terminal 232
IF statements as 165
list of operands for coding 168
preventing the deactivation of 183
processing 181, 184
understanding 116, 165
using to create self-checking

scripts 190
logical configuration

description of 11
types

TCP/IP 12, 13, 14
VTAM applications and LUs 12

Loglist Utility 262
loglists

INSTALL1 network 375
WSim as an application 380

LU statement, VTAM simulation 21
LU-LU session

request/response units (subarea
simulation) 63, 65

request/response units (terminal
simulation) 61, 63

LU2 terminals, simulating errors in 233
LUSTAT 243

M
message generation

for a display terminal 222
interrupting with delimiters 139
monitoring and automating with

control statements 199
planning considerations 99, 105
with IBM 5250 display system 242

message generation decks 3
checklist for developing 103
coding with delimiters 150
coding with message generation

statements 110
creating with message generation

statements 96
creating with the Structured Translator

Language (STL) 96
defining selection of 248
described 97
designing 100
determining message content 101
developing scripts 103
documenting 102
examples for VTAM application 254
function testing 102
how to create 96
integrating with network

definitions 101, 247
introduced 95
not referenced by terminals,

including 250
related to network definitions 95
specifying for error recovery 251
specifying the first 250
structuring 101
syntax testing 102
testing 102
use of 107, 116

message generation statements
BRANCH 201
CANCEL 211
CHARSET 234, 236
classifying 115
CLEARPTN 236
CMND 225, 229
CMxxxx CPI-C simulation

statements 195, 197
COLOR 235
CURSOR 231
DEACT 212
DELETE 231
ENDTXT 111
ENTER 220

428 Creating Workload Simulator Scripts

message generation statements
(continued)

ERROR 198
EVENT 201, 209
HELP 242
HIGHLITE 235
IF 113
INSERT 231
JUMP 236
LABEL 201
LCLEAR 232
LOG 200
MONITOR 199
MSGTXT 111
MSGUTBL 121
ON 212
OPCMND 199
RESET 198, 230
RESP 198, 227
RETURN 202
RH 198, 224
SCROLL 236
SEND 220
SET 202
SETSW 202
SETUTI 156
STOP 147
STRIPE 233
syntax conventions for 107
TAB 220
TEXT 117
TH 198, 224
using 96
WAIT 113, 140
WTO 199

message scripting
CPI-C transaction program (TP)

example
with multiple-instance TPs 315
with single-instance TPs 309

File Transfer Protocol (FTP)
example 303

Simple TCP Client example 305
Telnet 3270 example 297
WSim as an application 289

message text, entering 109
message tracing 87
message-level logic tests

terminology used to describe 167
understanding 166

messages
continuing 110
generating dynamically

with $UTBL$ 123
with random numbers 119
with user tables 121

generating for display terminals 219
generating for SNA terminals 224
generating manually

combining types of data 117
entering data 117

generating with the TEXT
statement 117, 136

logging 262
sending with delimiters 148
with sequence counters 126

with index counters 127

messages (continued)
with sequence counters (continued)

with save and user areas 129
model networks

CPI-C 403
FTP 394
Simple TCP Client 396
Telnet 3270 391
VTAM application 389

MONITOR statement 199
MSGTXT statement

coding 111
operands

CONCHAR 112
COUNT 112
PAD 112
TXTDLM 112

using 195
MSGUTBL statement 88, 121
multiple

devices, using events to
synchronize 216

partitions 236
multiple-instance CPI-C TPs 314

N
name field 108
network definition 3, 11, 17

coding 162
example for VTAM application 252
integrating message generation decks

with 247, 258
network definition statements

APPCLU 37
DEV 52
DIST 249
FE 75
FILE 55
hierarchy 16
IF 82
INCLUDE 250
LU 21
MSGUTBL 88
NTWRK 15
NTWRKLOG 80
PATH 248
PATH (for message decks) 85
RATE 79, 158
RN 120
SET 75
SIDEEND 37
SIDEENT 37
SIDEINFO 37
TCPIP 51
TP 38
UDIST 88
UTBL 88, 122
UTI 155
VTAMAPPL 20

network logic tests 81, 84
network options

automatic terminal recovery 87
counters

allocation for resources 74
altering values of 75
index 74

network options (continued)
counters (continued)

sequence 73
delays, message generation

automatic UTI adjustment 77
DELAY operand 78
EMTRATE 77
RATE statement 79
THKTIME operand 79
user time intervals (UTIs) 76
UTI adjustment 77, 78
UTI statement 76

exit routines 89
future events 75
logging messages

DEBUG option 80
inhibiting message logging 81
separate log data sets for

networks 80
logic tests 81, 84
message tracing 87
paths for message generation

decks 85
random number generation 86
response-time statistics, online 84
scanning, terminal 87
start time 75
STL program tracing 88
terminal recovery, automatic 87
terminal scanning 87
tracing messages 87
tracing STL programs 88
user data tables 88
user exit routines 89
UTBL statement 88

network-level logic tests 165
networks, defining 11, 17
NTWRK statement 15
NTWRKLOG statement 80

O
ON statement 212
ON/SIGNAL facility 215
online response-time statistics

(RSTATS) 84
OPCMND statement 199
operand field 108
operand names, entering 109
operand values, entering 109
operator reports

end of run reports 261
Inactivity Report 261
interval reports 260
trace reports 261
using 260

output
analyzing simulations with 260
comparing 3270 display records 264
determining response times 266
formatting the log data set 262
types of 260
using operator reports 260
using the Display Monitor

Facility 269
using the log data set 262

Index 429

P
PAD operand (MSGTXT statement) 112
parallel sessions 25
PATH

network definition statement
CYCLIC operand 249
selecting decks 248

operand on network definition
statements 248

statement (for message decks) 85
path selection

cyclic 249
probability distribution 249

paths for message generation decks 85
physical configuration

description of 11
types

TCP/IP 12, 14
VTAMAPPL 12

planning for message generation
designing message generation

decks 100
determining message content 101
documenting message generation

decks 102
identifying special requirements 100
integrating decks with network

definitions 101
structuring message generation

decks 101
testing scripts 102
understanding simulation

objectives 99
understanding what you are

testing 99
PORT operand (DEV (TCPIP)

statement) 53, 297
Preprocessor 257
printers, simulating 233
probability distribution, path selection

with 249
probability distributions, selecting table

entries with 124
processing logic texts

activating 181
deactivating 181

programmed symbols (PS) 236

Q
QUIESCE indicator 148
QUIESCE statement 147

R
random number generation 86
random numbers

generating messages dynamically
with 119

using $RNUM$ to specify a range
of 120

random selection of table entries 124
RATE

network definition statement 158
statement 79

rate tables, generating 91, 93

request/response unit (RU)
in subarea simulations 63, 65
in terminal simulations 61, 63

RESET statement
coding example 198
using 198, 230

RESOURCE operand 21, 30
RESP operand on the IF statement 228
RESP statement

coding example 198, 227
using 198, 227

Response Time Utility 266
response times

determining 266
determining with the Response Time

Utility 266
determining with the Response-Time

Statistics facility 269
Response-Time Statistics facility

(RSTATS) 269
response-time statistics, online 84
RETURN statement 202
RH statement

coding example 228
using 224
using during SNA simulations 198

RIGHT function on the DATASAVE
statement 133

RN network definition statement 120

S
sample installation networks

ITPECHO 281
MVS directions for INSTALL1 282
VTAM application 281
VTAM application program,

description of 281
sample loglists

INSTALL1 network 375
WSim as an application 380

save and user areas
converting DBCS data in a message

from 133
generating messages dynamically

with 129, 136
inserting data into a message

from 134
manipulating data in a message

from 133
placing data in, with the DATASAVE

statement 130
SB2DBCS function on the DATASAVE

statement 133
SB2MDBCS function on the DATASAVE

statement 133
SCAN 87
SCANCNTR operand on the IF

statement 179
scanning, terminal 87
script generating utilities

creating message generation decks
with 96

Interactive Data Capture 96
Script Generator Utility 96

Script Generator Utility 96

scripts
coding method 4
coding steps (checklist) 9
coding with delimiters 150
coding with intermessage delays 161
description of 3
developing 103
example 5
example for VTAM application 255
preprocessing 17
storing 17, 257
testing 102

SCROLL statement 236
scrolling 236
selecting table entries

randomly with a probability
distribution 124

with the $UTBL$ data field
option 123

self-checking scripts
creating with logic tests 190, 195
logic example 192
verifying simulations without 191
with message-level logic tests 192
with network-level logic tests 193

SEND statement 220
SENSE operand on the CMND

statement 225
sequence counters

data field options for 126
generating messages with 126, 127

sequential processing, altering 200
sessions, initiating for SNA

terminals 229
SET statement 75, 202
SETSW statement 202
SETUTI statement 156
SIDEEND statement 37
SIDEENT statement 37
SIDEINFO statement 37
Simple TCP Client 49, 58
Simple TCP Client example

message generation decks 306
network definition statements 305
sample network 305
STL procedures 307

Simple TCP Client model 396
simulating

3270 Data Analysis/APL Character
Set 234

3270 extended functions 235
3274 Local Clear key 232
3278 Magnetic Stripe Reader 233
APL/Text Character Set 234
cursor movement 231
Delete key 231
Enter key 220
errors in 3270 SDLC terminal 233
errors in IBM 5250 terminal 244
errors in LU2 terminal 233
errors in SNA devices 227
Insert key 231
printers 233
Tab key 220

single-instance CPI-C TP simulation
sample 307

430 Creating Workload Simulator Scripts

SNA (Systems Network Architecture)
defining terminals 14
network definition statements,

NTWRK 15
simulating resources and

subareas 61, 65
simulating subareas, request/response

units (RUs) 63, 65
simulating terminals,

request/response units (RUs) 61,
63

simulation support, request/response
units 61, 65

SNA commands 61
SNA messages, modifying 224
SNA terminals

generating messages for 224
initiating sessions for 229

specifying
first message generation deck 250
message generation decks for error

recovery 251
start time 75
statement field 108
STATUS=HOLD operand on the IF

statement 183
STCPROLE operand 59
STL procedures

for CPI-C
with multiple-instance TPs 317
with single-instance TPs 311

for FTP networks 305
for ITPECHO 283
for Simple TCP Client networks 307
for Telnet 3270 networks 297
for WSim as an application 292

STL program tracing 88
STOP statement 147
storage for scripts 17
STRIPE statement 233
Structured Translator Language (STL) 96
subarea simulation, SNA commands

supported 63, 65
switches, setting with the SETSW

statement 202
synchronizing multiple devices with

events 216
syntax conventions

for data field options 118
for message generation

statements 107
syntax testing 102
system under test, definition of 3

T
Tab key, simulating 220
TAB statement 220
TCP/IP 49

coding network definition 51
example network definition 51

defining application
configurations 49

logical configuration 49
physical configuration 50

defining clients 52

TCP/IP (continued)
general simulation

characteristics 52
defining connections 51
network definition statements

DEV 51, 52
TCPIP 51

simulating clients 49
using client simulation 51
using connection protocol 49

TCPIP statement 51
Telnet 3270 example

message generation decks 297
sample network 296

Telnet 3270 model 391
Telnet 3270 network

simulating clients 49, 53, 296
simulation characteristics

3270 54
display 54

terminal recovery, automatic 87
terminal scanning 87
test plan 11
TEXT operand on the IF statement 170
TEXT statement

coding 112
generating messages with 117, 136
summarizing message generation

with 136
TH statement

coding example 198, 228
using 224
using during SNA simulations 198

THEN operand on the IF statement
E (execute) on 175
IGNORE action on 178
on multiple IF statements 177
use of 173
VERIFY-(data) on 176

THKTIME operand on the NTWRK
statement 154

TP statement 38
trace reports 261
tracing messages 87
tracing STL programs 88
transaction program (TP) 204
TRANSLATE function on the DATASAVE

statement 133
TXTDLM operand on the MSGTXT

statement 112
TYPE operand on TCP/IP DEV 53

U
UDIST statement 88
unconditional delimiters

interrupting message generation
with 139, 148

QUIESCE 147
STOP 147
WAIT 140

user areas
converting DBCS data in a message

from 133
generating messages dynamically

with 129, 136

user areas (continued)
inserting data into a message

from 134
placing data in, with the DATASAVE

statement 130
user data tables 88
user exit routines 89
user tables

defining 121
defining with UTBL network

definition statement 122
generating messages dynamically

with 121, 125
user time intervals

altering with the A (Alter) operator
command 157

defined 153
referencing multiple 156
specifying multiple 155

UTBL 88
UTBL network definition statement 122
UTBL operand on the IF statement 178
UTBL statement 88
UTBLCNTR operand on the IF

statement 178
UTI network definition statement 155

V
variable event names, using 212
VERIFY-(data) for THEN and ELSE on

the IF statement 176
verifying simulations without

self-checking scripts 191
VTAM

application program sample,
description of 281

application sample 281
VTAM application model 389
VTAM applications

Application Program Interface
simulating LUs accessing 19, 35
WSim using 19

CICS/VS definitions, coordinating
with WSim, VTAM definitions 23

coding considerations
for VTAM APPL 22
for WSim VTAMAPPL 22

coordinating WSim, VTAM, and
subsystem definitions 23, 24

defining resources 20, 24
IMS/VS definitions, coordinating with

WSim, VTAM definitions 24
index counters for VTAMAPPL and

LU 74
initiating sessions

by VTAM 30
by WSim 30

network definition example 24, 30
network definition statements

LU 21
VTAMAPPL 20

sequence counters for VTAMAPPL
and LU 73

simulating 19, 35
simulating LUs accessing 19, 35
simulation support 19, 20

Index 431

VTAM applications (continued)
terminating sessions

by VTAM 30
by WSim 30

VTAMAPPL statement 20

W
WAIT indicator 144

preserving over asynchronous IF
statements 145

WAIT statement
coding 113
operands

EVENT 141
TIME 142
UTI 143

using 140
WAIT/POST facility 214
WHEN operand on the IF statement 169
Workload Simulator (WSim)

description of 279
WSim/ISPF Interface model networks

CPI-C 403
FTP 394
Simple TCP Client 396
Telnet 3270 391
VTAM application 389

WTO statement 199

Z
ZEND operator command 199

432 Creating Workload Simulator Scripts

����

Printed in USA

SC31-8945-01

	Contents
	Figures
	Tables
	Notices
	Trademarks and service marks

	About this book
	Who should read this book
	How to use this book
	Where to find more information

	Part 1. Defining WSim networks
	Chapter 1. Introducing network definition
	Creating scripts for tests
	Defining the network
	Creating message generation decks
	A method for creating scripts

	Example of a script
	Checklist for creating scripts

	Chapter 2. Understanding the network definition process
	Defining a network using the test plan
	Determining the logical and physical configuration
	VTAM application simulation
	TCP/IP client simulation

	The basic network definition statements
	NTWRK statement
	PATH statement
	VTAMAPPL statement
	LU statement

	Hierarchy of the basic network definition statements
	Allocating WSim data sets on MVS
	Preprocessing your script

	Chapter 3. Simulating logical units using the VTAM Application Program Interface
	WSim support for VTAM application simulations
	Defining VTAM application resources
	Network definition statements for VTAM resources
	WSim VTAMAPPL coding considerations
	VTAM APPL coding considerations
	Coordinating WSim, VTAM, and subsystem definitions

	VTAM application network definition example
	How VTAM application sessions are initiated and terminated
	Session initiation and termination by WSim
	Session initiation and termination by VTAM
	Additional VTAMAPPL considerations

	Chapter 4. Simulating CPI-C transaction programs
	WSim support for CPI-C transaction program simulations
	Defining CPI-C simulation resources
	Network definition statements for CPI-C resources

	Designing your CPI-C transaction program simulations
	Network definition considerations
	Scripting considerations
	CPI-C architecture considerations
	VTAM APPL coding considerations
	Coordinating WSim, VTAM, and subsystem definitions

	CPI-C transaction program network definition example
	Coding CPI-C network definition and STL statements
	Coding CPI-C message generation decks

	Chapter 5. Simulating TCP/IP devices
	Using the TCP/IP connection protocol
	Simulating TCP/IP clients
	Defining TCP/IP application configurations
	Using TCP/IP client simulation
	Coding the network definition
	Defining the TCP/IP interface connection
	Defining TCP/IP clients

	Simulating Telnet 3270 clients
	Defining display characteristics
	Defining 3270 characteristics

	Simulating Telnet 5250 and NVT clients
	Simulating FTP clients
	Defining FILE characteristics
	Generating FTP commands and messages

	Simulating simple TCP clients
	Limited server

	Simulating simple UDP clients

	Chapter 6. Simulating SNA resources and subareas
	How WSim processes request/response units
	Request/response units in terminal simulations
	Receiving messages
	Transmitting generated messages

	Request/response units in SNA simulations

	Chapter 7. Simulating specific devices
	IBM 3270 Information Display System
	3270 character set identification
	Display Monitor Facility
	Restrictions

	IBM 3290 Information Panel
	Operands required for 3290 simulation
	Logical terminal screen definition
	Determining screen size (UASIZE) from the screen split
	Determining character cell size (CCSIZE) and display size (DISPLAY)

	Simulating 3270 DBCS devices

	IBM 5250 Display System
	Logic testing
	Formatting the screen image buffer and format table

	Chapter 8. Coding network options
	Counters and STL integer variables
	Sequence counters
	Index counters
	Allocation of counters for resources
	Altering the values of counters and STL integer variables

	Future events and start time
	Message generation delays and transmit interrupts
	UTI statement
	UTI adjustment
	DELAY operand
	RATE statement
	THKTIME operand

	Message logging
	Separate log data sets for networks
	The DEBUG option
	Inhibiting message logging to save space
	Inhibiting the logging of specific messages

	Network logic tests
	What can be tested
	When tests can be performed
	What comparisons can be made
	What actions can be taken

	Online response-time statistics
	The RSTATS operand

	Paths for message generation decks and STL programs
	Random number generation
	How WSim generates random numbers

	Terminal scanning and automatic terminal recovery
	Tracing messages and Structured Translator Language (STL) programs
	Message tracing
	Structured Translator Language program tracing

	User data tables
	User exit routines

	Chapter 9. Generating rate tables
	Creating input statements
	Generating the rate tables

	Part 2. Introducing message generation decks
	Chapter 10. Getting started with message generation decks
	How do message generation decks relate to network definitions?
	How can you create message generation decks?
	Using the Structured Translator Language (STL)
	Using message generation statements
	Using script generating utilities

	What does a message generation deck look like?

	Chapter 11. Planning for message generation
	Planning considerations
	Understanding what you are testing
	Identifying special requirements
	Designing message generation decks
	Structuring message generation decks
	Determining message content
	Integrating message generation decks with network definitions

	Documenting message generation decks
	Testing scripts
	Syntax testing
	Function testing

	Developing scripts
	Checklist for creating message generation decks

	Part 3. Coding message generation statements
	Chapter 12. Basic concepts
	Syntax conventions for message generation statements
	Coding the name field
	Coding the statement field
	Coding the operand field
	Entering message text
	Entering operands and operand values

	Coding comments and the comment field

	Basic message generation statements
	Coding the MSGTXT and ENDTXT statements
	Coding the TEXT statement
	Coding the WAIT statement
	Coding the IF statement

	Classification of message generation statements
	Understanding delimiters
	Understanding logic tests
	Understanding control statements

	Chapter 13. Generating messages with the TEXT statement
	Generating messages manually
	Entering data
	Combining types of data

	Generating messages dynamically
	Understanding data field option syntax
	Understanding data field option use
	Random numbers
	Specifying a range of numbers
	Using the RN network definition statement

	User tables
	Defining a user table
	Generating messages with the $UTBL$ data field option

	Sequence and index counters
	Sequence counters
	Index counters

	User and save areas
	Placing data in a user or save area with the DATASAVE statement
	Manipulating Data in a Save or User Area with the DATASAVE Statement
	Converting data in a save or user area with the DATASAVE statement
	Inserting data into a message

	Summary of message generation with the TEXT statement

	Chapter 14. Understanding delimiters
	How delimiters affect the message generation process
	How delimiters are classified
	Interrupting message generation with unconditional delimiters
	The WAIT statement
	Coding the EVENT operand
	Coding the TIME operand
	Coding the UTI and TIME operands
	Understanding the WAIT indicator
	Preserving the WAIT indicator over asynchronous IF statements
	Understanding the EVENT WAIT indicator

	The STOP statement
	The QUIESCE statement

	Sending messages with conditional delimiters
	Coding a script with delimiters

	Chapter 15. Understanding intermessage delays
	Specifying an intermessage delay
	Determining the start of an intermessage delay with the THKTIME operand
	Specifying multiple user time intervals
	Coding the UTI statement
	Referencing multiple user time intervals
	Coding the IUTI operand
	Coding the SETUTI statement

	Altering user time intervals with the A (Alter) operator command
	Specifying delay values for individual resources
	Coding the DELAY operand

	Specifying intermessage delays for individual messages
	Coding a script with intermessage delays

	Chapter 16. Defining logic tests
	Understanding logic tests
	Network-level logic tests
	Message-level logic tests
	Terminology used to describe message-level logic tests

	Coding IF statement operands
	Coding the WHEN operand
	Coding the TEXT and AREA operands
	Coding the LOC operand
	Coding the LOCTEXT operand
	Coding the THEN and ELSE operands
	E (Execute)
	VERIFY-(data)
	Coding THEN and ELSE on multiple IF statements

	Coding the UTBL and UTBLCNTR operands
	Coding the SCANCNTR operand

	Processing logic tests
	Activating logic tests
	Deactivating logic tests
	Preventing the deactivation of logic tests
	Evaluating logic tests
	Conditions under which a logic test is not evaluated
	Logic testing DBCS data

	Logic test examples
	Example illustrating logic testing
	Example of logic testing for a display terminal using WHEN=IMMED
	Expected response received
	Unexpected response received

	Using logic tests to create self-checking scripts
	Determining whether you need self-checking scripts
	Creating self-checking scripts
	Message-Level self-checking scripts
	Network-Level self-checking scripts

	Positioning statements to check your scripts
	Checking for unexpected responses

	Chapter 17. Understanding control statements
	Coding control statements
	MSGTXT
	DATASAVE
	CALC
	DELAY
	EXIT
	CMxxxx

	Using control statements for specific types of devices
	RESET
	ERROR
	RESP
	TH
	RH

	Monitoring and automating message generation
	OPCMND
	MONITOR
	WTO and WTOABRHD
	LOG

	Altering sequential processing
	BRANCH
	CALL
	LABEL
	RETURN

	Setting switches and counters
	SETSW
	SET
	Setting a counter to a specific value or random number
	Setting a counter with arithmetic operations
	Setting a counter to hexadecimal data
	Setting a counter to the length of user or save area data
	Setting a counter to EBCDIC data
	Setting a counter to the cursor's row, column, or offset
	Setting a counter to the number of rows or columns in a display
	Setting a counter to the index of the last item in a user table

	Controlling events
	EVENT
	CANCEL
	ON
	DEACT
	Coding variable event names with the DATASAVE statement
	Controlling communications with events
	WAIT/POST facility
	ON/SIGNAL facility

	Using events to synchronize multiple devices

	Chapter 18. Generating messages for specific types of devices
	Generating messages for display terminals
	INPUT INHIBITED indicator
	Simulating the enter and tab keys
	Following message generation for a display terminal

	Generating messages for SNA terminals
	Modifying SNA messages
	TH statement
	RH statement
	CMND statement

	Simulating errors in SNA devices
	RESP statement
	RESP operand on the IF statement
	TH statement
	RH statement
	CMND statement

	Initiating sessions for SNA terminals

	IBM 3270 Information Display System
	Generating messages
	Using the RESET statement
	Simulating the insert and delete keys
	Simulating cursor movement
	3270 key options
	Simulating the 3274 local clear key
	Logic testing
	Simulating errors in an LU2 terminal
	Simulating printers
	Simulating the 3278 magnetic stripe reader
	Simulating the Data Analysis/APL Character Set
	Simulating the APL/Text Character Set
	Simulating 3270 extended functions
	Extended color
	Extended highlighting
	Programmed Symbols (PS)
	Multiple partitions and scrolling
	12-Bit and 14-Bit buffer addressing
	Structured fields

	Testing field and character attributes
	Logging the display image for formatting by the Loglist Utility
	Display Monitor Facility
	Simulating DBCS data entry for simulated 3270 DBCS terminals

	IBM 5250 Display System
	Message generation
	Logic testing
	Simulating errors in a 5250 terminal

	Part 4. Using message generation decks
	Chapter 19. Integrating decks with network definitions
	Selecting message decks in the network definition
	Selecting decks with the PATH statement
	Assigning paths to simulated resources
	Selecting paths in a cycle
	Selecting paths with a probability distribution
	Specifying the first message generation deck
	Including decks in a script
	Specifying decks for error recovery

	Creating a script
	Understanding the network definition
	Understanding the sample message generation decks
	Understanding the sample script

	Storing your scripts
	Using the preprocessor
	Using the ITPSYSIN utility program

	Chapter 20. Analyzing simulation results
	Running a simulation
	Using WSim output
	Using operator reports
	Interval reports
	End of run reports
	Trace reports
	The inactivity report

	Using the log data set
	Formatting the log data set with the Loglist Utility
	Comparing 3270 display records with the Log Compare Utility
	Determining response times with the Response Time Utility

	Using online facilities
	Using the Display Monitor Facility
	Using the Response-Time Statistics Facility

	Chapter 21. 3270 extended character set
	Part 5. Samples
	Chapter 22. Introduction
	Sample installation networks
	Message scripting examples
	AVMON example

	Chapter 23. Sample installation networks
	The ITPECHO sample VTAM application program
	WSim as a VTAM application (INSTALL1)
	Directions for an MVS system
	Suggested exercise
	Sample installation network (INSTALL1)
	STL procedure

	Chapter 24. Message scripting examples
	WSim as an application
	Network definition
	Message generation deck
	STL procedure

	TCP/IP examples
	Telnet 3270 example
	Network definition statements
	Message generation deck
	STL procedures

	Sample WSim script for a Telnet 3270E simulation
	Sample Telnet Line Mode Network Virtual Terminal message generation deck
	Sample Telnet Line Mode Network Virtual Terminal STL procedure
	File Transfer Protocol (FTP) example
	Network definition statement
	Message generation deck
	STL procedure

	Simple TCP Client example
	Network definition statement
	Message generation deck
	STL procedure

	CPI-C example with single-instance transaction programs
	Network definition statements
	Message generation decks
	STL procedures

	CPI-C example with multiple-instance transaction programs
	Network definition statements
	Message generation decks
	STL procedures

	Chapter 25. AVMON example
	Availability monitoring
	Performance monitoring
	Automated operations
	AVMON processing description
	Network controller level
	Subsystem controller level
	Subsystem terminal pool level
	For NetView
	For TSO

	Modifying AVMON for other subsystem monitoring
	AVMON as an automated operator
	Automated operator requirements
	An example of an AVMON automated operator

	Generating a summary report with the WSim Loglist Utility
	Loglist Utility run parameters

	Generating a summary report with the Response Time Utility
	AVMON decks
	AVMON VTAMAPPL configuration
	ACTRLNET message generation deck
	AFORTIME message generation deck
	AMONNETV message generation deck
	ALOGNETV message generation deck
	ACHKNETV message generation deck
	AMONTSO message generation deck
	ALOGTSO message generation deck
	ACHKTSO message generation deck

	AVMON STL procedures
	Constant declarations
	Variable declarations
	Integer variables
	String variables
	Bit variables

	Table declarations
	ACTLRNET procedure
	AMONNETV procedure
	ALOGNETV procedure
	ACHKNETV procedure
	AMONTSO procedure
	ALOGTSO procedure
	ACHKTSO procedure
	AVMON utility procedures
	SAVEMSG
	SPECMSG
	NETVMSG
	REFTIME
	AVSTATS
	REINIT
	NOWOK
	CLEARIT
	ATTNKEY
	PARSPROC
	TIMER

	Chapter 26. Loglist examples
	INSTALL1 loglist
	WSIM application loglist
	CPI-C multiple-instance TP loglist

	Chapter 27. Network models
	VTAM application simulation
	Network definition
	Message generation deck
	STL procedure

	Telnet 3270 simulation
	Network definition
	Message generation deck
	STL procedure

	File Transfer Protocol (FTP) simulation
	Network definition
	Message generation deck
	STL procedure

	Simple TCP client simulation
	Network definition
	Message generation deck
	STL procedure

	Simple TCP sample script
	Simple TCP Client connecting to a server using Telnet Line Mode Network Virtual Terminal

	CPI-C transaction program simulation
	Network definition
	Message generation decks
	STL procedures

	Part 6. Appendixes
	Glossary
	Bibliography
	WSim Library
	Related publications

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

